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Preface

A friend of one of the authors has written a book with the (ironic) title In the Midst
of Plenty. This would be an apt, if unusual, choice of title for this book. A first
course in complex analysis introduces keys that unlock many doors. One such key
is the residue theorem, in its many forms; another is analytic continuation. The
doors open onto many subjects of interest. Too many subjects, in fact, to cover in a
single follow-up course.

This book assumes as background a standard first course in complex analysis.
Our purpose is to provide relatively brief, but self-contained, introductions to many
of the subjects alluded to above. Some of these subjects are within the mainstream
of complex analysis itself. Other topics provide tools that are widely used within
pure mathematics, or that have applications beyond mathematics, or both. Some
topics come up in different contexts in different chapters. For example, there are two
proofs of Picard’s “little” theorem, and several discussions of the parametrization of
algebraic curves.

Chapter 1 is a summary, with selected proofs, of material from a basic course in
complex analysis. Included are Cauchy’s theorem and consequences (integral for-
mula, series expansion, residue theorem, maximum modulus principle, reflection
principle). Also included are the basics of infinite products and analytic continua-
tion. For later use the chapter contains introductions to the Stieltjes integral relative
to a jump function, to Hilbert spaces, and to Lp spaces (as completions of spaces of
nice functions).

Chapter 2 introduces the Riemann sphere and its automorphism group, the group
of linear fractional transformations. The cross product and general mapping prop-
erties are covered, and the automorphism groups of the half-plane and the disk are
identified. These considerations lead naturally to hyperbolic geometry in the disk or
half-plane, which is the subject of Chapter 3.

Chapter 4 introduces harmonic functions in the plane. The Dirichlet problem and
Poisson’s formula lead to the Weierstrass approximation theorems, and to the
Riesz-Fischer theorem for Fourier series. The Schwarz reflection principle prepares
the way to the results on boundary behavior of conformal maps that are covered in
several later chapters.
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Riemann’s mapping theorem, the Schwarz–Christoffel formulas, and univalent
functions are covered in Chapter 5. In Chapter 6 the Schwarzian derivative is
introduced as a measure of curvature, followed by the proof that mappings to
curvilinear polygons are quotients of solutions of Fuchsian equations. Particular
cases of this are mappings to triangles, or to regular polygons, shown to be quo-
tients of hypergeometric functions.

Chapter 7 covers analytic continuation, Riemann surfaces of functions, algebraic
curves, and compact Riemann surfaces. The chapter concludes with a very brief
introduction to surfaces of higher genus, exemplified by the Bolza surface. This
chapter leads, in a way, to the following two chapters, as well as to later chapters on
elliptic functions.

The Weierstrass product theorem and Hadamard’s product formula for functions
of finite order are the focus of Chapter 8. Application is made to Riemann’s xi
function, and to an eigenvalue problem. Chapter 9 introduces Nevanlinna’s value
distribution theory for entire meromorphic functions, starting with Jensen’s theorem
and the Nevanlinna and Ahlfors–Shimizu characteristics. Nevanlinna’s second
fundamental theorem is shown to have applications to two theorems of Picard.

Chapter 10 introduces Euler’s two definitions of the gamma function, the beta
function, the reflection formula, and Legendre’s duplication formula. Included is a
far-reaching extension, due to Stieltjes, of Stirling’s asymptotic approximation,
which is important for the study of the Riemann hypothesis in Chapter 13.

Chapters 11 through 13 make up an introduction to analytic number theory.
Riemann’s zeta function and xi function in Chapter 11 lead to Dirichlet L-functions
and Dirichlet’s theorem on primes in arithmetic progressions in Chapter 12. Chapter
13 treats the prime number theorem in the context of the Riemann hypothesis, and
also the relation of the Riemann hypothesis to the accuracy of Gauss’s approximate
formula for the distribution of primes.

Chapters 14 through 16 introduce elliptic functions and three approaches to their
construction. The general theory and construction by means of theta functions, are
covered in Chapter 14. Chapters 15 and 16 are independent of each other. The
pendulum equation leads to the Jacobi elliptic functions in Chapter 15.
Weierstrass’s direct construction, starting with the period lattice, is covered in
Chapter 16.

The Weierstrass theory of Chapter 16 leads to the study of the modular function,
Picard’s theorems, and a glance into automorphic functions and the J function in
Chapter 17. (An appendix notes the connection to “moonshine” and the monster
group.)

Chapter 18 introduces approximate identities, Schwartz functions, and the
Cauchy and Hilbert transforms. The Cauchy transform leads naturally to the Fourier
transform in L1ðRÞ and in L2ðRÞ. This, in turn, prepares the way for the following
two chapters, which are independent of each other.
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Chapter 19 treats the Phragmén–Lindelöf principle. This principle is applied in
Hardy's characterization of the Gaussian probability distribution, in the proof of the
Paley–Wiener theorem, and in the proof of a theorem of Hardy concerning func-
tions of exponential type.

A theorem of Wiener, and its generalization by Lévy, are proved in Chapter 20.
These theorems are used in a version, due to Gohberg and Krein, of the Wiener–
Hopf approach to equations of convolution type on the half-line.

Chapters 21 through 23 are generally independent of each other and of earlier
chapters (other than Chapter 1). Chapter 21 treats some tauberian theorems, from
Tauber and Hardy through Karamata and Wiener. A theorem of Malliavin provides
an error estimate that is applicable to distribution of eigenvalues. The section on
Wiener’s theorem has some dependence on results from Chapter 18.

Chapter 22 introduces the method of steepest descent. Applications include
asymptotics of the Airy integral, and the Hardy–Ramanujan theorem on asymp-
totics of the partition function. Chapter 23 sketches the complex interpolation
method, interpolation of Lp spaces, and the Riesz–Thorin theorem, with application
to Fourier series.

We have tried to make the various presentations self-contained. This has led us
to some short excursions into real analysis, functional analysis, and algebra. In
particular we have included expositions of irreducibility for polynomials in two
variables, and of the character theory of finite abelian groups.

We have also tried to make the various chapters as independent as possible.
Charts that show the principal dependence relations follow this preface.

The first author used selections of drafts of a number of these chapters in two
versions of a second-semester complex variables class at Yale in 2018 and 2019. He
is grateful to the students for their indulgence and attentiveness. Their pertinent
questions and comments led to a number of corrections and clarifications. The first
author is also grateful to the staff of the Liu Bei Ju Center of City University of
Hong Kong, as well as Dr. Huang Xiaomin and Dr. Wang Xiangsheng for their
assistance and technical help in June 2019. The second author also thanks
Dr. Huang Xiaomin for her considerable help as a postdoc in 2019. Both authors are
grateful to Alberto Guzman for critical reading of much of the manuscript, and to
their wives, Nancy and Edwina, for their unfailing moral support.

New Haven, CT, USA Richard Beals
Kowloon, Hong Kong
May 2020

Roderick S. C. Wong
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Chapter 1
Basics

This chapter begins with a brief summary of facts from a standard introductory
complex variables course: Cauchy’s formula and consequences, isolated singulari-
ties, residues, and the complex logarithm. Also included are three topics that are not
as standard for an elementary course, but are used in many of the following chap-
ters: reflection properties, infinite products, and analytic continuation. For all this
material we give brief discussions and sketches of proofs.

The chapter concludes with an outline of basic facts about three subjects from
real analysis and functional analysis that occur in one or more later chapters: the
Stieltjes integral (discrete case), Hilbert space, and Lp spaces (including duality).

Throughout, a domain Ω is a non-empty open subset of the complex plane C. In
this chapter it is assumed that Ω is bounded and that the boundary ∂Ω is the union
of finitely many piecewise smooth closed curves, oriented so that Ω lies to the left
of each boundary curve. All curves are assumed to be piecewise smooth, and simple
(having no self-intersections).

1.1 The Cauchy–Riemann equations and Cauchy’s integral
theorem

Real numbers are denoted here by x, y. Recall that if z = x+ iy, then z̄ = x− iy and

z = r(cosθ + isinθ) = r eiθ ,

r2 = x2+ y2 = z z̄, θ = tan−1(y/x) = argz. (1.1.1)

Consider a function

f (x+ iy) = u(x,y)+ i v(x,y), x+ iy ∈ Ω ,

where u and v are real-valued and have continuous first partial derivatives. The
complex-valued function f is holomorphic (differentiable in the complex sense) if
© Springer Nature Switzerland AG 2020
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and only if u and v satisfy the Cauchy–Riemann equations:

ux = vy, uy = −vx, (1.1.2)

where the subscripts denote partial differentiation.
Green’s theorem (or an argument due to Goursat that uses only pointwise differ-

entiability) yields the basis theorem of the subject.

Theorem 1.1.1. (Cauchy integral theorem) If f is holomorphic in a domain Ω ,
and continuous on the closure of Ω , then

∫
∂Ω

f (ζ )dζ = 0. (1.1.3)

Let us pause to look at the Cauchy–Riemann equations and Cauchy’s theorem
from the point of view of differential forms and Green’s theorem. The pairs of
1-forms dz, dz̄, and dx, dy are related by

dz = dx+ idy, dz̄ = dx− idy;

dx =
dz+dz̄

2
, dy =

dz−dz̄
2i

.

Thus

d f =
∂ f
∂x

dx+
∂ f
∂y

dy =
1
2

[
∂ f
∂x

− i
∂ f
∂y

]
dz+

1
2

[
∂ f
∂x

+ i
∂ f
∂y

]
dz̄.

It is natural to express this as

d f =
∂ f
∂ z

dz+
∂ f
∂ z̄

dz̄ = ∂ f dz+ ∂̄ f dz̄,

where

∂ =
∂
∂ z

=
1
2

[
∂
∂x

− i
∂
∂y

]
; ∂̄ =

∂
∂ z̄

=
1
2

[
∂
∂x

+ i
∂
∂y

]
. (1.1.4)

With f = u+ iv we find that

∂ f =
1
2
[(ux + vy)+ i(vx −uy)] , ∂̄ f =

1
2
[(ux − vy)− i(vx +uy)] . (1.1.5)

Thus the Cauchy–Riemann equations (1.1.2) are equivalent to the single equation
∂̄ f = 0.

A standard form of Green’s theorem is that if Ω is a domain, then
∫

∂Ω
[Pdx+Qdy] =

∫∫
Ω
[Qx −Py]dxdy. (1.1.6)

It is an exercise, using the identities above, to show that (1.1.6) is equivalent to the
equation
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∫
∂Ω

[ f dz+gdz̄] = 2i
∫∫

Ω
[∂̄ f −∂g]dxdy. (1.1.7)

In particular, taking g= 0 and assuming that ∂̄ f = 0, we obtain (1.1.3) as a particular
case.

Another application of these identities is the calculation of the area of the image
of a domain Ω under an injective holomorphic function f whose first and second
partial derivatives are continuous up to the boundary. If f = u+ iv, the area is

∫∫
Ω

∣∣∣∣ux vx

uy vy

∣∣∣∣ dxdy =
∫∫

Ω
[uxvy −uyvx]dxdy =

∫∫
Ω
[u2x + v2x ]dxdy.

Note that ∂ f = ux + ivx, and ∂ [ f̄ ] = 0, so the integrand is

∂ f ∂ f = ∂̄ [∂ f · f̄ ] = ∂̄ [ f ′ f̄ ].

It follows from (1.1.7) that for holomorphic injective f ,

Area{ f (Ω)} =
1
2i

∫
∂Ω

f ′(z) f (z)dz. (1.1.8)

1.2 The Cauchy integral formula and applications

Much of basic complex function theory consists of exploring (fairly immediate)
consequences of Theorem 1.1.1. One such consequence is the Cauchy integral for-
mula. If f is holomorphic in a general domain Ω , and continuous on the closure, we
can apply (1.1.3) to the function

g(w) =
1
2πi

· f (w)
w− z

, w ∈ Ω ,

on the domain Ωε formed by removing from Ω a small disk centered at z,

Dε(z) = {w : |w− z|< ε} = {w : w = z+ reiθ , r < ε, 0≤ θ < 2π}
The integral over the boundary of Dε , oriented in the positive (counterclockwise)
direction, approaches f (z) as ε → 0; see the calculation (1.2.4). Taking the limit
yields the formula (1.2.1). This formula can be differentiated arbitrarily often.

Theorem 1.2.1. (Cauchy integral formula) If f is holomorphic in a domain Ω ,
and continuous on the closure of Ω , then for each z ∈ Ω ,

f (z) =
1
2πi

∫
∂Ω

f (ζ )
ζ − z

dζ . (1.2.1)

More generally, each derivative can be written as an integral:
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f (n)(z) =
n !
2πi

∫
∂Ω

f (ζ )dζ
(ζ − z)n+1 . (1.2.2)

Thus a holomorphic function is infinitely differentiable. Moreover, if

|z− z0| < r = inf
ζ∈∂Ω

|ζ − z0|,

then the expansion

1
ζ − z

=
1

(ζ − z0) ·
[
1− z− z0

ζ − z0

] =
∞

∑
n=0

(z− z0)n

(ζ − z0)n+1

converges uniformly for ζ ∈ ∂Ω . This gives

Theorem 1.2.2. (Taylor expansion) If f is holomorphic in a disk Dr(z0), then f
has a convergent Taylor expansion

f (z) =
∞

∑
n=0

an(z− z0)n, |z− z0|< r; an =
f (n)(z0)

n !
. (1.2.3)

Other easy consequences of the Cauchy integral formula are various mean value
and maximum principles. For example, if f is holomorphic in a domain that includes
the closure of a disk Dr(z), then a change of variables

ζ = z+ reiθ

gives

f (z) =
1
2πi

∫
|ζ−z|=r

f (ζ )
ζ − z

dζ =
1
2π

∫ 2π

0
f (z+ reiθ )dθ . (1.2.4)

One can also take the real or imaginary part of this formula.

Theorem 1.2.3. (Mean value property) If f is holomorphic in a domain Ω , then
the value of f at each point z0 ∈ Ω is the mean of the values on any circle
{z : |z− z0| = r} that is small enough so that Dr(z0) is contained in Ω . The real
and imaginary parts of f have the same property.

It is an easy consequence of Theorem 1.2.3 that the maximum value of the mod-
ulus | f (z)|, or of the real or imaginary parts of f , occurs at the boundary of Ω . A
closer examination of (1.2.4), taking into account the Taylor expansion, shows that
no such maximum value can occur at an interior point of Ω unless f is constant near
the point.
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Theorem 1.2.4. (Maximum modulus principle) If f is holomorphic in Ω and con-
tinuous on the closure of Ω , then the maximum value of the modulus | f (z)| is
attained on the boundary. The same is true for the real and imaginary parts of f .

Theorem 1.2.5. (Strong maximum modulus principle) If Ω is connected and the
maximum modulus is attained at a point of Ω itself, then f is constant. The same is
true for the real and imaginary parts of f .

We note here another frequently used consequence of the Cauchy integral for-
mula.

Proposition 1.2.6. Suppose that { fn}∞
n=1 is a sequence of functions holomorphic in

a domain Ω , and suppose that the sequence converges to a function f , uniformly on
each compact subset of Ω . Then f is holomorphic in Ω .

In fact if z ∈ Ω , the convergence is uniform on a small circle Γ that contains
z. Therefore in the disk bounded by Γ the limit function f is given by the Cauchy
integral formula, from which it follows that f is holomorphic in that disk.

An entire function is a function f that is holomorphic in the entire plane C. For
each R > 0 and each z ∈ C, (1.2.1) and (1.2.2) give

f (z) =
1
2πi

∫
|ζ−z|=R

f (ζ )
ζ − z

dζ

and, more generally,

f (n)(z) =
n !
2πi

∫
|ζ−z|=R

f (ζ )
(ζ − z)n+1 dζ .

Since the circle of integration has length 2πR and the modulus of the denominator
is Rn+1, it is easy to see that constraints on the growth of f can imply vanishing of
high-order derivatives.

Theorem 1.2.7. (Liouville’s theorem) If f is entire and bounded, then f is con-
stant.

Theorem 1.2.8. (Extended Liouville theorem) If f is entire and

| f (z)| ≤C(|z|n +1)

for some integer n ≥ 0, then f is a polynomial of degree ≤ n.
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1.3 Change of contour, isolated singularities, residues

The Cauchy integral theorem is often used to justify a change of contour in an
integration . This is particularly useful in the rest of this section. Rather than for-
mulate a general theorem, we illustrate with an example. Suppose that the domain
Ω is bounded by one large circle Γ and two smaller, disjoint circles, Γ1, Γ2, that are
enclosed by Γ , as in Figure 1.1 on the left. Suppose that f is holomorphic in Ω and
continuous on the closure. Then

∫
Γ

f (z)dz =
∫

Γ1
f (z)dz+

∫
Γ2

f (z)dz, (1.3.1)

where each circle is oriented in the positive (counterclockwise) direction.
In fact, Theorem 1.1.1 implies that the integral of f over the contour on the right

in Figure 1.1 is zero. In the limit, as the gap is closed, the integrals over the flat parts
of the contour cancel, and we are left with (1.3.1) in the form

∫
Γ

f (z)dz−
∫

Γ1
f (z)dz−

∫
Γ2

f (z)dz = 0.

An isolated singularity for a holomorphic function is a point z0 such that f is
holomorphic in a punctured disk Ω = {z : 0< |z− z0|< r}.

An isolated singularity z0 is said to be a removable singularity if a value f (z0)
can be assigned to f at z0 in such a way that the extended function is holomorphic
in some disk {z : |z− z0|< r}.

An isolated singularity z0 is said to be a pole if there is some integer n > 0 such
that

f (z) =
a−n

(z− z0)n +
a1−n

(z− z0)n−1 + · · ·+a0+a1(z− z0)+ . . . (1.3.2)

in some punctured disk {0< |z− z0|< r}. The expansion (1.3.2) is called the Lau-
rent expansion of f at z0. The order of the pole is n. A simple pole is a pole of
order 1.

Γ1
Γ2

Γ Γ

Fig. 1.1 Change of contour in integration
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Suppose that f is bounded and holomorphic in the punctured disk {z : 0 < |z−
z0|<R}. By choosing a smaller radius, we may assume that f is continuous up to the
circle {z : |z− z0|= r}. Let g(z) = (z− z0) f (z) and g(z0) = 0, so g(z) is continuous
at z0. Using the Cauchy integral formula for the annulus {z : ε < |z− z0| < r} and
letting ε → 0, we find that g is given by the Cauchy integral formula and is therefore
holomorphic near 0. If follows that the same is true for f = g/(z− z0). Thus

Proposition 1.3.1. Suppose that z0 is an isolated singularity of f and suppose that
f (z) is bounded for 0< |z− z0|< r. Then z0 is a removable singularity: f (z) has a
limit at z = z0 and extends to be holomorphic in Dr(z0).

Corollary 1.3.2. Suppose that z0 is an isolated singularity of f . Suppose that for
some integer n, g(z) = (z− z0)n f (z) is bounded as z → z0, and suppose that n is the
least such integer. If n is negative, it follows that z0 is a removable singularity, at
which f has a zero of order −n. If n is positive, then f has a pole of order n at z0,

An isolated singularity that is neither removable nor a pole is called an essential
singularity. In this case the behavior near z0 is quite different.

Theorem 1.3.3. (Casorati–Weierstrass theorem) Suppose that f is holomorphic
in a domain Ω and has an essential singularity at z0 ∈ Ω . In each punctured neigh-
borhood Dε = {z : 0< |z− z0|< ε}, f comes arbitrarily close to any given complex
number a.

Proof: Suppose, to the contrary, that | f (z)− a| ≥ δ > 0 in Dε . Then g(z) =
1/[ f (z)− a] has an isolated singularity at z0. Moreover, g is bounded as z → z0,
so the singularity is removable. If g(z0) �= 0, then f has a removable singularity at
z0. If g has a zero of degree n > 0 at z0, then f has a pole of order n at z0. �

Let us return to the Laurent expansion (1.3.2). Suppose that f is holomorphic in
{z : 0 < |z0| < R}. Then (z− z0)−1−n f (z) can be integrated term-by-term over the
boundary of the domain {z : ε < |z− z0|< r < R}. Taking ε → 0, we find that

an =
1
2πi

∫
|z−z0|=r

f (z)dz
(z− z0)n+1 . (1.3.3)

In particular, the coefficient a−1 is defined to be the residue res( f ,z0) of f at z0:

res( f ,z0) =
1
2πi

∫
|z−z0|=r

f (z)dz. (1.3.4)

A function f is said to be meromorphic in a domain Ω if f is holomorphic except
at isolated points that are poles of f . An application of Cauchy’s theorem to the
domain minus sufficiently small disks centered at the poles gives the following.
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Theorem 1.3.4. (Residue theorem) If f has finitely many poles in Ω and is contin-
uous on the closure, then

1
2πi

∫
∂Ω

f (ζ )dζ = ∑
z∈Ω

res( f ,z). (1.3.5)

The residue theorem can be used to count poles and zeros (taking into account
multiplicities). In fact, suppose that near z = z0, f (z) = (z− z0)ng(z), where n is an
integer, g is holomorphic, and g(z0) �= 0. Then

f ′(z)
f (z)

=
n

z− z0
+

g′(z)
g(z)

has residue n at z0. As a consequence:

Theorem 1.3.5. (Counting zeros and poles) If f is meromorphic in Ω , and contin-
uous and nowhere zero at the boundary, then

1
2πi

∫
∂Ω

f ′(ζ )
f (ζ )

dζ

= number of zeros of f minus number of poles of f in Ω , (1.3.6)

where the zeros and poles are counted according to multiplicity.

Corollary 1.3.6. If f is meromorphic in Ω and continuous on the boundary, then it
takes each value in the complement of f (∂Ω) the same number of times (counting
multiplicity) in each connected component of this complement.

Proof. If f does not take the value a on the boundary, then the integral

N(a) =
1
2πi

∫
∂Ω

f ′(ζ )
f (ζ )−a

dζ

counts the number of times f takes the value a minus the number of poles. The
number of poles is constant, and N(a), being integer-valued and continuous with
respect to a, is also constant on the connected component of the complement that
contains a. �

The following are two more applications of these ideas.

Theorem 1.3.7. (Rouché’s theorem) Suppose that f and g are holomorphic in Ω
and continuous on the closure. If | f (z)−g(z)|< | f (z)| on the boundary ∂Ω , then f
and g have the same number of zeros in Ω .

In fact the function fs(z) = (1−s) f (z)+sg(x) = f (z)−s[ f (z)−g(z)], 0≤ s ≤ 1,
has no zeros on ∂Ω , so the number of zeros in Ω is
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1
2πi

∫
∂Ω

f ′s(ζ )
fs(ζ )

dζ .

This is an integer-valued continuous function of s, so it has the same value at s = 0
and at s = 1. But f0 = f , f1 = g.

Theorem 1.3.8. (Inverse function theorem) Suppose that f is holomorphic near
z0 and f ′(z0) �= 0. Then f has an inverse that is holomorphic near f (z0).

In fact it follows from the series expansion at z0 that for small r > 0, f (z) �= f (z0)
if z is inside or on the curve Γ = {z : |z− z0|= r}. Therefore if a is close enough to
f (z0), the integral

1
2πi

∫
Γ

ζ f ′(ζ )
f (ζ )−a

dζ

is the unique value of z inside the curve such that f (z) = a. This expression is a
holomorphic function of a.

1.4 The logarithm and powers

In view of (1.1.1), the complex logarithm logz, z �= 0, is defined by

logz = log(|z|eiargz) = log |z|+ iargz. (1.4.1)

Here log |z| denotes the usual choice for positive argument; thus log |z| is real. Of
course argz is defined only up to addition of an integer multiple of 2π . By a branch
of the logarithm in a connected domain Ω , we mean a choice that is holomorphic
throughout Ω . (Such a choice may not be possible, e.g. in a deleted neighborhood
of the origin {z : 0 < |z| < r}.) A branch is called the principal branch if Ω ∩R is
not empty and logz is real on this intersection.

An important concept here is that of a simply connected domain, usually
defined to be one that is connected and in which each closed curve can be con-
tinuously shrunk to a point. An equivalent definition is that Ω is connected and
given two curves γ0 and γ1 in Ω that join points z and w, there is a family of curves
γt : [0,1]→ Ω , 0< t < 1, such that γt(0) = z, γt(1) = w, and the map (s, t)→ γt(s)
is continuous, 0 ≤ s, t ≤ 1. (Showing that the two definitions are equivalent is an
interesting exercise.)

Suppose that Ω is a simply connected domain. Suppose also that 0 is not in Ω .
Then a branch of the logarithm may be obtained by choosing z0 ∈ Ω , choosing
logz0, and setting

logz = logz0+
∫ z

z0

dζ
ζ

. (1.4.2)

Because of the assumption that Ω is simply connected, the integral is independent
of the path of integration from z0 to z: see Section 1.7 for details.
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Corresponding to a branch of the logarithm, and to each α ∈C, there is a branch
of the power zα :

zα = eα logz. (1.4.3)

This is independent of the branch of the logarithm if and only if α is an integer.

1.5 Infinite products

We will encounter a number of infinite products, often written in the form

∞

∏
n=1

(1−an), (1.5.1)

where the an are complex numbers. The key tool to be used is the following estimate.

Lemma 1.5.1. Suppose |z| ≤ 1/2. Then the principal branch of log(1− z) satisfies

| log(1− z)+ z| ≤ |z|2 ≤ |z|
2
. (1.5.2)

Proof: Integrating along the line segment from 1 to 1+ z,

log(1− z) =
∫ 1−z

1

ds
s

= −
∫ z

0

dt
1− t

= −
∫ z

0
(1+ t + . . . )dt = −z− z2

2
− . . . ,

so

| log(1− z)+ z| ≤ |z|2
2

(1+ |z|+ |z|2+ . . . ) =
|z|2
2

· 1
1−|z| ≤ |z|2. �

The (formal) product (1.5.1) is said to converge if

lim
M,N→∞

N

∏
n=M

(1−an) = 1. (1.5.3)

This implies that the partial products ∏∞
M(1−an) have a non-zero limit, as soon as

M is large enough that n≥M implies 1−an �= 0. In particular, a necessary condition
for convergence is that 1−an → 1, i.e. an → 0. Suppose that |an| ≤ 1/2 for n ≥ M.
Then, taking the principal branch of the logarithm

log

∣∣∣∣∣
N

∏
M
(1−an)

∣∣∣∣∣ =
N

∑
n=M

| log(1−an)|.
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The product is said to be absolutely convergent if

∞

∏
n=1

(1+ |an|)

converges. Absolute convergence implies convergence. It follows from (1.5.2) that
if |an| ≤ 1/2, then

|an|
2

≤ | log(1+ |an|) ≤ 3|an|
2

.

Therefore the product converges absolutely if and only if ∑∞
n=1 |an|< ∞.

We mention here the Weierstrass product theorem: if {an} is a sequence of points
in the plane such that |an| tends to ∞, then there is an entire function whose zeros,
counting multiplicity, are the points an. For the proof, see Chapter 8. Here is a proof
for a case that is encountered several times in other chapters.

Theorem 1.5.2. Suppose that {an} is a sequence of non-zero numbers such that the
sum ∑∞

n=1 |an|−2 is finite. Then the product

f (z) =
∞

∏
n=1

(
1− z

an

)
ez/an (1.5.4)

defines an entire function whose zeros are the an.

Proof: For a given z, |z/an| will be less than 1/2 for n ≥ N(z). The logarithm of the
n-th factor is

log

(
1− z

an

)
+

z
an

(1.5.5)

and by (1.5.2), for fixed z (1.5.5) has modulus ≤ |z|2/|an|2 for large n. Thus the
product converges uniformly on bounded sets. This implies that the function f is
entire. Moreover, the product vanishes only where some factor vanishes. �

1.6 Reflection principles

Theorem 1.6.1. Suppose that Ω is a domain that is symmetric under reflection
about the real axis: Ω = Ω , and the intersection I = Ω ∩R is not empty. Sup-
pose also that f is holomorphic on the intersection of Ω with the upper half-plane
C+ = {z : Imz > 0}, continuous up to I, and real on I. Then f has a holomorphic
extension to the remainder of Ω , with

f (z̄) = f (z), z ∈ Ω+. (1.6.1)

Proof: The prescription (1.6.1) defines f so as to be holomorphic in Ω ∩C−, and
continuous in all of Ω . We need to show that f is holomorphic near I. Consider a
complex neighborhood Dr(x0) of a point x0 ∈ I, whose closure is contained in Ω .
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Let
Δ± = Dr(x0)∩{z :±Imz > 0}, (1.6.2)

and

g(z) =
1
2πi

∫
|ζ−x0|=r

f (ζ )dζ
ζ − z

, |z− x0|< r.

This function is holomorphic in Dr(x0). For z ∈ Δ+ the lower semicircle of the con-
tour can be moved to the x-axis, showing that g = f on Δ+. Similarly, g = f on Ω−
if we use (1.6.1) to define f on Δ−. It follows that (1.6.1) extends f holomorphically
across I. �

Theorem 1.6.2. Suppose that Ω and I are as in the previous theorem. Suppose that
f is holomorphic in Ω ∩C+, nowhere zero, and continuous up to I. Suppose also
that | f (x)| = 1 for x ∈ I. Then f has a holomorphic extension to the remainder of
Ω , with

f (z̄) = 1/ f (z). (1.6.3)

Proof: As in the previous proof, it is sufficient to work in a small disk Dr(x0). For
small r a branch g of log f can be chosen in Δ+. By the assumption on | f |, the
limit of ig is real on Dr(x0)∩R. Therefore ig can be continued to all of Dr(x0).
The continuation of g, given by (1.6.1) for ig, exponentiates to the continuation of
f given by (1.6.3). �

The assumption in Theorem 1.6.2 that f is continuous up to I and | f (z)|= 1 on
I can be replaced by the weaker assumption that | f (z)| → 1 as z approaches I. This
is the Schwarz reflection theorem; see Chapter 4. It plays a key role in connection
with conformal mapping in Chapters 5, 6, and 17.

1.7 Analytic continuation

There are two situations that give rise to the consideration of analytic continuation.
An example of one such situation is the function f defined by the series

f (z) = 1+ z+ z2+ z3+ · · ·+ zn + . . . . (1.7.1)

The series converges if and only if |z|< 1. On the other hand, the sum is 1/(1− z),
which is holomorphic in the complement of the point z = 1. It is natural to consider
1/(1− z) as a continuation of f : the extension of f to a function holomorphic on a
larger domain. A natural question: is such an extension unique?

An example of a second such situation is the logarithm. Starting with the usual
choice in a neighborhood of z = 2, and following along a curve that circles the
origin in the positive direction, one comes back not to log2 but to log2+2πi—but
it is natural to think of this “branch” as an analytic continuation of the original. For
a visualization see Figure 1.2.
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log 1 = −2πi

log 1 = 0

log 1 = 2πi

log 1 = 4πi

log(−1) = −πi

log(−1) = πi

log(−1) = 3πi

Fig. 1.2 Analytic continuation of the logarithm

In general, suppose that f0 is holomorphic in an open disk D0 centered at z0,
suppose that γ : [0,1]→ C is a curve with γ(0) = z0, and suppose that D0 does not
contain γ (we are systematically conflating γ as a mapping and γ as a set of points,
i.e. the image of the mapping). It may still be the case that we can find successive
points z j = γ(t j) along the curve and functions f j holomorphic in disks D j centered
at z j such that D j ∩D j+1 �= /0, f j = f j+1 on D j ∩D j+1, and the union of the D j

covers γ . The result is a function f , holomorphic in a neighborhood of the curve γ ,
that agrees with f0 near z0. The function f is said to be a continuation of f0 along
the curve γ .

Proposition 1.7.1. (Uniqueness of analytic continuation) If two functions that are
holomorphic in a connected domain Ω agree on a non-empty open subset of Ω ,
then they agree on all of Ω .

Proof: It suffices to prove that if f is holomorphic in Ω and vanishes near a point
z0 ∈ Ω , then f is identically zero. Let z be another point of Ω and let γ : [0,1]→ Ω
be a smooth curve with γ(0) = z0 and γ(1) = z. If f (γ(s)) = 0 for 0 ≤ s ≤ t, then
it follows that each derivative of f vanishes at z = γ(t). Thus the Taylor expansion
of f vanishes at γ(t), so f vanishes in a neigborhood of γ(t). It follows from this
argument that f vanishes along the entire curve, so f (z) = 0. �

Recall from Section 1.4: a connected domain Ω ⊂ C is said to be simply con-
nected if each closed curve in Ω can be deformed continuously to a point (a constant
curve). For example, the plane C is simply connected, but the complement of any
non-empty bounded subset A is not. As noted above, an equivalent definition is that
any two curves from a point z0 to a point z1 can be deformed continuously from one
to the other.

Theorem 1.7.2. (Monodromy theorem) Suppose that the domain Ω is simply con-
nected. Suppose that f0 is holomorphic in a domain Ω0 ⊂ Ω , and suppose that f0
can be continued along each curve in Ω . Then f0 has a unique holomorphic exten-
sion to all of Ω .
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Proof: Take z0 ∈ Ω0. It is enough to show that the continuation of f0 along a curve
γ : [0,1]→Ω that starts at z0 leads to a value f (γ(1)) that depends only on z1 = γ(1),
not on the particular curve γ . Suppose that γ0 and γ1 are two such curves from z0
to z1. Then there is a family of curves γt from z0 to z1, 0 < t < 1, that interpolates
continuously from γ0 to γ1.

Suppose that f0 is continued along each curve γt . Let T be the supremum of those
t such that γt(z1) = γ0(z1) It follows from Proposition 1.7.1 that T is positive. It fol-
lows from continuity that γT (z1) = γ0(z1). Then T = 1, since, otherwise, Proposition
1.7.1 implies that equality at z1 can be extended past t = T . �

1.8 The Stieltjes integral

The basic idea of the Stieltjes integral is to weight an interval I = (a,b) not by its
length b−a but by g(b)−g(a), where g is some non-decreasing real function. Then
ordinary Riemann sums are replaced by sums

n

∑
j=1

f (x j) [g(x j)−g(x j−1)], a = x0 < x1 < · · ·< xn = b,

and the limit as the intervals shrink is denoted
∫ b

a
f (x)dg(x).

With some attention to behavior at the endpoints, one can integrate by parts, assum-
ing that f is continuously differentiable, leading to

∫ b

a
f (x)dg(x) = f (x)g(x)

∣∣∣∣
b

a
−

∫ b

a
g(x) f ′(x)dx. (1.8.1)

We will not need the general theory, only the special case when g is piecewise
constant. Say g : [0,∞)→ [0,∞),

g(x) = ∑
xk≤x

ck, 0< x1 < x2 < · · ·< xn < .. . .

We take the integral to be continuous from the right. Then it is easily checked that
∫ x

0
f (x)dg(x) = lim

ε→0+

∫ x+ε

0
f (x)dg(x) = ∑

xk≤x
ck f (xk). (1.8.2)

In this case one can justify (1.8.1) by simple bookkeeping. If xn < x < xn+1 then
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∫ x

0
g(t) f ′(t)dt =

n−1

∑
j=1

∫ x−j+1

x+j

g(t) f ′(t)dt +
∫ x

x+n
g(t) f ′(t)dt

=
n−1

∑
j=1

g(x j)[ f (x j+1)− f (x j)]+g(xn)[ f (x)− f (xn)]

= −g(x1) f (x1)−
{

n−1

∑
j=1

[g(x j+1)−g(x j)] f (x j+1)

}
+g(x) f (x)

= −
n

∑
j=1

c j f (x j)+g(x) f (x). (1.8.3)

This is the discrete version of the integration-by-parts formula (1.8.1).
Summarizing,

Proposition 1.8.1. Suppose that f : [0,∞)→ C is continuously differentiable and

g(x) = ∑
xk≤x

ck,

where ck > 0 and 0< x1 < x2 < x3 < · · ·< xn < .. . . Then
∫ x+

0
f (t)dg(t) = ∑

xk≤x
ck f (xk) = f (x)g(x)−

∫ x+

0
g(t) f ′(t)dt, (1.8.4)

1.9 Hilbert spaces

For some applications we need the basics of Hilbert space theory. The starting point
is an inner product space. This is a complex vector space H, equipped with an inner
product (u,w), defined for each pair u, w in H and having the properties

(a1u1+a2u2,w) = a1(u1,w)+a2(u2,w), a j ∈ C, u j,w ∈ H; (1.9.1)

(u,w) = (w,u), u,w ∈ H; (1.9.2)

(u,u) > 0 if u ∈ H and u �= 0. (1.9.3)

Let
||u||=

√
(u,u).

A basic property is the Cauchy–Schwarz inequality

|(u,w)| ≤ ||u|| ||w||. (1.9.4)

The proof can be reduced to the case ||u|| = ||w|| = 1. Then for each a ∈ C with
|a|= 1,
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0 ≤ ||u−aw||2 = (u−aw,u−aw)
= ||u||2− (u,aw)− (aw,u)+ ||aw||2
= 2−2Re{ā(u,w)}.

We may choose a with |a|= 1 in such a way that Re{ā(u,w)}= |(u,w)|.
The Cauchy–Schwarz inequality implies the triangle inequality

||u+w|| ≤ ||u||+ ||w||.
This and the positivity property (1.9.3) imply that d(u,w) = ||u−w|| is a metric. The
space H is said to be a Hilbert space if H is complete with respect to this metric.

First example: the space l2(Z) of two-sided complex sequences x = (xn)∞−∞ such
that

∞

∑
n=−∞

|xn|2 < ∞,

with inner product

(x,y) =
∞

∑
n=−∞

xnȳn.

The Cauchy–Schwarz inequality, applied to partial sums, implies that the inner prod-
uct is well-defined. This space is easily shown to be complete.

Second example: the space of continuous functions u : R→ C that are periodic,
with period 2π:

u(x+2π) = u(x), (u,w) =
1
2π

∫ π

−π
u(x)w(x)dx.

The completion of this inner product space with respect to the associated metric is
L2
per(R); it can be identified with the corresponding space for the interval [0,2π],

L2([0,2π]).

Two elements u, w of an inner product space are said to be orthogonal, written
u ⊥ w, if (u,w) = 0. Note that

u ⊥ w ⇒ ||u+w||2 = ||u||2+ ||w||2.
An orthonormal set in an inner product space H is a subset consisting of elements
{ϕ j} such that

(ϕ j,ϕk) =
{
1 if j = k;
0 if j �= k.

For our purposes the index set { j} here is finite or countable. Let us suppose that it
is the integers Z. If {ϕn} is an orthonormal set in H, let
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un = ∑
| j|≤n

(u,ϕ j)ϕ j.

An easy calculation shows that un and u−un are orthogonal, so

∑
| j|≤n

|(u,ϕ j)|2 = ||un||2 = ||u||2−||u−un||2.

This implies Bessel’s inequality:

∑
| j|≤n

|(u,ϕ j)|2 ≤ ||u||2, (1.9.5)

and also Bessel’s equality:

||u−un|| → 0 ⇔
∞

∑
j=−∞

|(u,ϕ j)|2 = ||u||2. (1.9.6)

The orthonormal set {ϕ j} is said to be complete, or an orthonormal basis if un con-
verges to u for every u ∈ H. Note that un is the element closest to u in the subspace
Hn spanned by {ϕ j}n−n. In fact if w belongs to Hn, then

||u− (un +w)||2 = ||u−un||2+ ||w||2

is minimal when w = 0.

1.10 Lp spaces

We consider two examples that illustrate the basic principles. The first is the space
l p(Z) of two-sided complex sequences x = (xn)∞−∞ such that

∞

∑
n=−∞

|xn|p < ∞.

Here it is assumed that 1 ≤ p < ∞. For p = ∞ the condition is replaced by the
condition that sup |xn|< ∞. We define

||x||p =

[
∞

∑
n=−∞

|xn|p
]1/p

, 1≤ p < ∞ (1.10.1)

and
||x||∞ = sup |xn|.

It is easily seen that ||x||p defines a norm when p = 1 or p = ∞. For intermediate
values we use Hölder’s inequality. Again, let
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(x,y) =
∞

∑
n=−∞

xnȳn.

Then Hölder’s inequality is

|(x,y)| ≤ ||x||p ||y||q if 1≤ p ≤ ∞ and
1
p
+

1
q
= 1. (1.10.2)

This is a partial generalization of the Cauchy–Schwarz inequality—the case p = 2
here—and it is obvious for p = 1 or p = ∞. Otherwise we reduce to the case ||x||p =
||y||q = 1 and start from the elementary inequality

|ab| ≤ |a|p
p

+
|b|q
q

if p,q > 0, and
1
p
+

1
q
= 1.

Plugging in xn and ȳn for a and b and summing gives (1.10.2). The next step is to
note that Hölder’s inequality is best possible: if 1≤ p ≤ ∞, then

||x||p = sup
||y||q=1

|(x,y)|, 1
p
+

1
q
= 1. (1.10.3)

Again this is easily seen in the extreme cases p = 1 and p = ∞. If 1 < p < ∞ we
assume again that ||x||p = 1. Set yn = 0 if xn = 0, and otherwise let

yn = |xn|p−1 xn

|xn| .

Then (x,y) = ||x||pp = ||y||qq = 1. The triangle inequality follows:

||x+y||p = sup
||z||q=1

|(x+y,z)| ≤ ||x||p + ||y||p.

Thus (1.10.3) is a norm and defines a metric. The spaces here are complete.

The second example starts with the space of functions u :R→C that have period
2π , with

||u||p =
[
1
2π

∫ π

−π
|u(x)|p dx

]1/p

, (1.10.4)

where 1 ≤ p < ∞. The discussion of l p(Z) can be adapted to show that Hölder’s
inequality holds in this case:

∣∣∣∣ 1
2π

∫ π

−π
u(x)w(x)dx

∣∣∣∣ ≤ ||u||p||w||q, 1< p < ∞,
1
p
+

1
q
= 1. (1.10.5)

Again, the triangle inequality is a consequence, so (1.10.4) is a norm and defines a
metric. The completion of the space of periodic continuous functions with respect
to this metric is the space Lp

per(R), or equivalently Lp([0,2π]).
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Remarks and further reading

Most undergraduate textbooks on complex analysis cover the basic complex anal-
ysis in this chapter. Graduate texts on real analysis or functional analysis generally
have reasonably thorough treatments of Hilbert space theory and Lp spaces.

Three classic complex analysis textbooks cover not only the material in this
chapter but several of the topics in subsequent chapters: Ahlfors [5], Hille [64],
and Titchmarsh [134].

The special issue of the Journal Primus, vol. 27, issue 8–9 (2017) on “Revital-
izing Complex Analysis” contains a number of papers that explore topics in this
chapter and their applications.



Chapter 2
Linear Fractional Transformations

In this chapter we introduce the Riemann sphere S and the meromorphic functions
that map S bijectively to itself. These transformations play many roles in complex
analysis, and in its applications to geometry and algebra. Of particular importance
are the transformations that map the upper half plane to itself, and the transforma-
tions that map the unit disk to itself.

2.1 The Riemann sphere

The complex plane can be completed by adding the point at infinity, denoted ∞. By
definition, a neighborhood of ∞ is a set that contains ∞ and a set {z : |z| > R}, for
some R≥ 0. Topologically, the resulting surface is a 2-sphere. The standard pictorial
representation is obtained by consideringC as the x,y plane of the three-dimensional
space

R
3 = C×R = {(w, t) : w ∈ C, t ∈ R},

and relating it to the 2-sphere of radius 1 centered at the origin:

S = {(w, t) : |w|2+ t2 = 1}.
The relation is stereographic projection: a point ω = (w, t) on S is mapped to a point
z= π(ω) inC by following the line from the north pole N = (0,1)∈ S through (w, t)
to its intersection (z,0) with C×{0}; see Figure 2.1.

The line determined by (0,1) and ω = (w, t) is the set of points

(1−λ )(0,1)+λ (w, t), λ ∈ R.

Thus for t �= 1,
π(w, t) =

w
1− t

.

It follows that

© Springer Nature Switzerland AG 2020
R. Beals and R. S. C. Wong, Explorations in Complex Functions,
Graduate Texts in Mathematics 287,
https://doi.org/10.1007/978-3-030-54533-8 2
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N

ω1

π(ω1)
π(ω2)

ω2

Fig. 2.1 Stereographic projection

|π(w, t)|2 =
|w|2

(1− t)2
=

1− t2

(1− t)2
=

1+ t
1− t

.

This can be solved for t as a function of z = π(w, t), showing that the inverse map
π−1 from C to S is given by

π−1(z) = ((1− t)z, t) =
(

2z
|z|2+1

,
|z|2−1
|z|2+1

)
.

As ω ∈ S approaches the north pole, π(ω) approaches ∞, so we let π(0,1) = ∞.

Some properties of the projection π are developed in the exercises. One property
is that the image of a circle in S is either a circle or a line in the plane, and conversely;
see Exercise 3. Another is that if we define a distance function in the plane by using
the euclidean distance of the pullback to C,

d(z1,z2) = c |π−1(z1)−π−1(z2)|, (2.1.1)

for some choice of a scaling constant c > 0, then

d(z1,z2) = c · 2|z1− z2|√
1+ |z1|2

√
1+ |z2|2

; (2.1.2)

see Exercise 4. We choose c = 1/2 so that the distance function

d(z1,z2) =
|z1− z2|√

1+ |z1|2
√

1+ |z2|2
(2.1.3)

is close to the euclidean distance when the z j are close to z = 0.
Taking the limit as z2 → ∞ gives

d(z,∞) =
1√

1+ |z|2 .
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From now on we use S to denote the Riemann sphere: the set C∪{∞}. We can
give S a complex structure by specifying what it means for a function to be holomor-
phic in a neighborhood of ∞. We say that f , defined in a punctured neighborhood of
∞, {z : |z|> R}, is holomorphic at ∞ if the function g(z) = f (1/z), which is defined
in the domain {z : 0 < |z| < 1/R}, is holomorphic and has a removable singularity
at z = 0. Similarly, we can define the notion of a pole or an essential singularity at
∞. If a function f has a pole at a point z of S, we define f (z) = ∞. In particular, a
function that is meromorphic on (all of) S can be considered as being everywhere
defined as a map from S to itself.

A natural question is: what meromorphic functions on S are bijective (one-to-one
and onto)?

Proposition 2.1.1. A meromorphic function f on S is bijective if and only if f can
be expressed in the form

f (z) =
az+b
cz+d

, (2.1.4)

where a,b,c,d are complex constants and ad −bc �= 0.

Proof: Suppose first that f is bijective. By assumption, f has at exactly one pole,
say at z0. A consequence of Corollary 1.3.6 is that if this pole has order k, then, near
z0, f takes each sufficiently large value exactly k times. Therefore k = 1: the pole is
simple.

Suppose first that the pole is located at z0 = ∞, and that the residue is a �= 0. Then
g(z) = f (z)− az is an entire function that is bounded at ∞ and so, by Liouville’s
theorem, is constant:

f (z) = az+b, a �= 0. (2.1.5)

Otherwise, f has a simple pole at some finite point z = d with a residue c �= 0. Then
f (z)− c/(z−d) is bounded and entire, hence constant:

f (z) = a+
c

z−d
, c �= 0. (2.1.6)

Each of the expressions (2.1.5) and (2.1.6) can easily be written in the form (2.1.4)
(with different constants).

Conversely, suppose that f has the form (2.1.4). Then it is easily checked that the
equation f (z) = w has a unique solution for each w ∈ S if and only if ad −bc �= 0.

�

Note that the expression (2.1.4) for a given map f is not unique: numerator and
denominator can be multiplied by the same non-zero constant. It follows that we
may always assume that ad −bc = 1.

Transformations of the form (2.1.4) are called Möbius transformations or linear
fractional transformations.

It is natural to associate to the linear fractional transformation (2.1.4) a matrix A
and write
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fA(z) =
az+b
cz+d

, A =
[

a b
c d

]
. (2.1.7)

The condition ad −bc �= 0 is precisely the condition that A be invertible.

Proposition 2.1.2. The composition of linear transformations fA and fB is given by

fA ◦ fB = fAB. (2.1.8)

The proof is a simple calculation. For a more conceptual approach, we make
a brief excursion into complex projective space. Start with the standard two-
dimensional complex vector space C2, with the elements written as column vectors.
Consider the collection of complex lines through the origin, i.e. sets of the form

Lz,w =
{

λ
[

z
w

]
: λ ∈ C

}
,

for some pair (z,w) �= (0,0). We may identify such a line with the equivalence class
of an element of C2 \{0} where

[
z′
w′

]
∼

[
z
w

]
if

[
z′
w′

]
= μ

[
z
w

]

for some μ ∈C, μ �= 0. This expresses the fact that these two points of C2 lie on the
same line through the origin. Then

[
z
w

]
∼

[
z/w
1

]
if w �= 0;

[
z
0

]
∼

[
1
0

]
if z �= 0.

Identifying [z,1]t with z ∈C and [1,0]t with ∞ identifies this space of complex lines
with the Riemann sphere S.

If A : C2 → C
2 is a linear transformation, then A commutes with multiplication

by λ ∈ C, so A takes equivalent elements to equivalent elements. In other words, A
induces a mapping of S to itself. In terms of canonical representatives of the form
[z,1]t , if the matrix of A is [

a b
c d

]
,

then, when cz+d �= 0, we have

A

[
z
1

]
=

[
az+b
cz+d

]
∼

[
(az+b)/(cz+d)

1

]
=

[
fA(z)
1

]
.

Thus linear fractional transformations are precisely the transformations of the Rie-
mann sphere S that are induced by invertible linear transformations of C2, when
S is identified with the space of complex lines through the origin in C

2. A conse-
quence of this correspondence is a conceptual proof (or a framework) for the identity
fA ◦ fB = fAB.
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An important property of linear fractional transformations is the following. The
proof is left as Exercise 12.

Proposition 2.1.3. Given a triple (z1,z2,z3) of distinct points in S, there is a unique
linear fractional transformation f such that

f (z1) = 0, f (z2) = 1, f (z3) = ∞. (2.1.9)

Corollary 2.1.4. Any given triple (z1,z2,z3) of distinct points in S can be taken to
any other such triple by a unique linear fractional transformation.

Remark. The assertion of uniqueness here reflects the fact a linear fractional trans-
formation is, by definition, a mapping. As noted earlier, a representation in the form
(2.1.4) is not unique.

2.2 The cross-ratio and mapping properties of linear fractional
transformations

Consider the question of determining what complex-valued functions

F(z1,z2, . . . ,zn), z j ∈ S,

are invariant under all linear fractional transformations f :

F ( f (z1), f (z2), . . . f (zn)) = F(z1,z2, . . . ,zn), all z j ∈ S.

It follows from Proposition 2.1.3 that if n ≤ 3, such a function is constant:

F(z1,z2, . . . ,zn) = F(0,1,∞).

The case n = 4 is more interesting. Given distinct (z1,z2,z3,z4), we may choose
the linear fractional transformation g = gz2,z3,z4 such that

g(z2) = 0, g(z3) = 1, g(z4) = ∞. (2.2.1)

Invariance implies

F(z1,z2,z3,z4) = F
(
gz2,z3,z4(z1),0,1,∞

)
.

Thus the invariant functions F : S4 → C are functions of gz2,z3,z4(z1). This latter
function is termed the cross-ratio, denoted [z1,z2,z3,z4]. The prescription (2.2.1)
gives

[z1,z2,z3,z4] =
z1− z2
z1− z4

/
z3− z2
z3− z4

=
(z1− z2)(z3− z4)
(z1− z4)(z3− z2)

. (2.2.2)
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We should check that the cross-ratio is invariant. Suppose that z1,z2,z3, and z4 are
distinct points, and let w j = f (z j). The cross-ratio

[w1,w2,w3,w4] = g(w1),

where g is the unique linear fractional transformation that maps the triple (w2,w3,w4)
to (0,1,∞). Then g ◦ f is the unique linear fractional transformation that maps the
triple (z2,z3,z4) to (0,1,∞), so

[z1,z2,z3,z4] = [g◦ f ](z1) = g(w1) = [w1,w2,w3,w4].

The cross-ratio can be used to give a simple proof of an important geometric fact.
By “line” here we mean straight line.

Theorem 2.2.1. The image of a line or a circle under a linear transformation is
either a line or a circle.

Note that the assertion is not that lines go to lines and circles go to circles, but
that each line goes to a line or a circle, and each circle goes to a line or a circle.
Suppose for the moment that Theorem 2.2.1 is true, and consider the cross-ratio. If
distinct points z1,z2,z3,z4 lie on a line or circle, then their images under the map g
of (2.2.1) should all lie on the real line, so the cross-ratio should be real. Conversely,
if the cross-ratio is real and Theorem 2.2.1 is true, then the z j should all lie on a line
or circle. This is, in fact, the case.

Lemma 2.2.2. Suppose that z1,z2,z3 are distinct points in the plane C. The (unique)
line or circle that they determine is the set of solutions z of the equation

Im [z,z1,z2,z3] = 0. (2.2.3)

Proof: Let g(z) = (az+b)/(cz+d) be the linear fractional transformation that takes
(z1,z2,z3) to (0,1,∞). Then (2.2.3) is equivalent to Img(z) = 0, i.e.

0 = (az+b)(cz+d)− (az+b)(cz+d) = i[α|z|2+ β̄ z+β z̄+ γ], (2.2.4)

where
α = 2Im(ac̄), β = i(ād −bc̄), γ = 2Im(bd̄).

If α = 0 then (2.2.4) is the equation of a line. If α �= 0, then dividing by α and
completing a square shows that (2.2.4) is equivalent to

∣∣∣∣z+ β
α

∣∣∣∣
2

=
∣∣∣∣β
α

∣∣∣∣
2

− γ
α
,

the equation of a circle with center −β/α . Since each g(z j) is one of 0,1, or ∞, the
z j themselves lie on this line or circle. �
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The proof of Theorem 2.2.1 is now straightforward. Given a line or circle Γ in
the plane, choose three distinct points z j ∈ Γ . Let w j be the image of z j under the
linear fractional transformation f . By Lemma 2.2.2, Γ is the set of solutions z of

Im [z,z1,z2,z3] = 0. (2.2.5)

By invariance of the cross-ratio, if z satisfies (2.2.5), then f (z) satisfies

Im [ f (z),w1,w2,w3] = 0,

so f (Γ ) is the line or circle determined by w1,w2,w3. �

A more geometric proof of Theorem 2.2.1 is outlined in Exercises 23 to 28.

An example of Theorem 2.2.1 is the map that takes the triple (0,1,∞) to (−1,−i,1).
This is theCayley transform

c(z) =
z− i
z+ i

. (2.2.6)

The image of the real axis is the unit circle Γ = {z : |z| = 1}. Since c(i) = 0, the
image of the upper half-plane C+ is the unit disk D = {z : |z| < 1}. The image
of the lower half-plane C− is the complement of the closed unit disk. The inverse
transform is

c−1(w) = i
1+w
1−w

. (2.2.7)

Under the Cayley transform, reflection across the real axis, i.e. the map z → z̄,
corresponds to reflection across the unit circle Γ . In fact, setting w = c(z), we have

w = c(z) → c(z̄) =
1
w
. (2.2.8)

2.3 Upper half plane and unit disk

There are two additional, widely used, geometric properties of linear fractional
transformations.

Proposition 2.3.1. The linear fractional transformation f maps the upper half-
plane C+ onto itself if and only if the coefficients in (2.1.4) can be chosen to be
real, and ad −bc > 0.

Proof: Suppose

f (z) =
az+b
cz+d

has real coefficients. Then f maps R to R, so f either preserves or interchanges the
two components Ω± of the complement. A calculation shows that the imaginary
parts Im f (z) and Imz have the same sign if and only if ad −bc > 0; Exercise 19.
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Conversely, suppose that f above maps C+ onto itself. Since f is bijective on S,
f must map the complement to itself, and it follows that f must map R∪{∞} to
itself. If c = 0, we may take d = 1. Then since f (0) and f (1) are real, it follows that
a and b are real.

If c �= 0, we may take c to be real. Since f (∞) is real, a is real. Since the pole of
f must be real, d must be real, and since f (1) is real, b must be real. As before, the
condition ad −bc > 0 is necessary. �

Proposition 2.3.2. The linear fractional transformation f maps the open unit disk
D= {z : |z|< 1} onto itself if and only if f can be written in the form

f (z) = ω
z−a

āz−1
, |a|< 1, |ω|= 1. (2.3.1)

Proof: Suppose f has the form (2.3.1). Then if |z|= 1,

| f (z)| =
∣∣∣∣ z−a
z(az̄−1)

∣∣∣∣ =
∣∣∣∣ z−a
a− z

∣∣∣∣ = 1.

It follows that f maps the complement of the unit circle onto itself, and since f (a) =
0 it follows that the bounded component D is mapped onto itself.

Conversely, suppose that f maps D onto itself. Then f must map the unit circle
to itself. Thus if |z|= 1, then

f (z̄) f (z̄) = 1, so f (z−1) =
1

f (z̄)
. (2.3.2)

Each side of the second equation defines a linear fractional transformation. Since
these transformations agree on the unit circle, they must agree everywhere. Now f
has a zero at some point a∈D, and (2.3.2) implies that f has a pole at 1/ā. Therefore
f has the form (2.3.1), with some constant ω . The previous calculation shows that
ω must have modulus 1. �

Proposition 2.3.1 and Proposition 2.3.2 can be strengthened, in part.

Lemma 2.3.3. (Schwarz lemma) Suppose that f : D → D and f (0) = 0. Then
| f (z)| ≤ |z|, all z ∈ D. In particular | f ′(0)| ≤ 1 and equality holds if and only if
f is a rotation: f (z) = ωz, |ω|= 1.

Proof: Let g(z) = f (z)/z, z ∈ D. Then g is holomorphic and |g(z)| ≤ 1/|z|. The
maximum modulus principle implies that |g(z)| ≤ 1/r for |z| ≤ r < 1. Taking the
limit, |g(z)| ≤ 1, all z ∈ D. If | f ′(0)|= 1, then the maximum value is taken at z = 0,
and the strong maximum modulus theorem says that g is constant. �

Theorem 2.3.4. Suppose that f :D→D or f :C+ →C+ is a holomorphic bijection.
Then f is a linear fractional transformation.
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Proof: Since the inverse Cayley transform (2.2.7) maps D onto C+, it is enough to
consider the case f : D→ D. We may replace f by its composition with a suitable
linear fractional transformation, and assume that f (0) = 0. It is enough to show that
f is a rotation. Lemma 2.3.3 applies to both f and to its inverse h, and implies that
the derivatives of f and its inverse at z = 0 must both have modulus 1. Therefore
both are rotations. �

Exercises

1. An affine map of C to itself has the form f (z) = az+ b, a �= 0. Given z1 �= z2,
there is a unique affine map f such that f (z1) = 0, f (z2) = 1. Find a function
〈z,z1,z2〉 with the property that a function of 3 variables that is invariant under
affine maps is a function of 〈z,z1,z2〉 (analogous to the cross-ratio [z,z1,z2,z3]).

2. Prove that the stereographic projection π : S \ {N} → C is conformal: if two
smooth curves in S cross at a point P �= N, then the angle made by their tangents
is the same as the angle made by the tangents to their images in C at the point
π(P). (Hint: if (w(s), t(s)) is a smooth curve in S, and z(s) = π(w(s), t(s)), then
the derivative ż has the form

ż(s) = f ′(w(s), t(s)) ·w(s).)
3. Prove that the image under π of a circle in S is a line or a circle in C. (Hint: a

circle in S is the intersection of S and a plane in C×R. The plane may be taken
to be defined by an equation

{(w, t) : Re(aw)+bt = c}, |a|2+b2 = 1, b ∈ R, 0≤ c < 1.

This induces an equation for π(w, t).)
4. Prove the distance relation (2.1.2). (A good starting point is the identity for

points (w j, t) ∈ S:

|w1−w2|2+(t1− t2)2 = 2−2Re(w1w2+ t1t2).)

5. Determine the relation between the length of the chord that joins two points on
the unit sphere S and the length of the arc of the great circle between the two
points.

6. Suppose the γ : [0,1] → S is a smooth curve. Based on the distance function
(2.1.3), express the length of (the image of) γ as an integral.

7. Use Exercise 6 to show that the length of the arc of a great circle determined
by two points in S is what it should be: the angle between the two radii. (It is
sufficient to consider the length of an interval on the positive real axis.)

8. Based on the distance formula, the “element of area” in C at the point z = x+ iy
should be

dxdy
(1+ |z|2)2 .

Show that the area of the sphere S is π .
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9. Suppose that a and b are complex numbers with |a|2+ |b|2 = 1. Prove that the
map f : S→ S given by

f (z) =
az+b

a−bz

is an isometry: d( f (z), f (w)) = d(z,w), for every pair z,w ∈ S. (Thus f corre-
sponds to a rotation of the sphere.)

10. Show that if f : S → S is meromorphic, then f is a rational function (i.e. a
quotient of polynomials).

11. Verify that
az+b
cz+d

= w

has a unique solution z ∈ S for each w ∈ S if and only if ad −bc �= 0.
12. Prove Proposition 2.1.3.
13. Derive formula (2.2.2).
14. Verify (2.1.8).
15. Give another proof that ad − bc �= 0 is necessary in Proposition 2.1.1 by com-

puting the derivative of fA.
16. Show that there is no loss of generality to assume that the matrix A associated

with a linear fractional transformation has determinant 1.
17. Show directly that the composition of two linear fractional transformations of

the form (2.3.1) has the same form.
18. Verify that the transformations (2.2.6) and (2.2.7) map C+ to D and D to C+,

respectively.
19. Show that if

f (z) =
az+b
cz+d

has real coefficients, then the imaginary parts of z and f (z) have the same sign
if and only if ad −bc > 0.

20. Show that a linear fractional transformation f that is not the identity map has
exactly one or two fixed points: points z such that f (z) = z.

21. Suppose the linear fractional transformation f has exactly one fixed point.
Investigate the possible behaviors of the sequence z0 = z, zn = f (zn−1) as n→∞.
(Hint: the fixed point can be assumed to the point at ∞.)

22. Suppose the linear fractional transformation f has exactly two fixed points.
Investigate the possible behaviors of the sequence z0 = z, zn = f (zn−1) as n→∞.
(Hint: the fixed points can be assumed to be 0 and ∞.)

23. Show that each linear fractional transformation is either of the form (2.1.5) or
has the form f ◦r◦g, where f and g have the form (2.1.5) and r(z) = 1/z. (Hint:
if the linear fractional transformation has a pole at a finite point, use g to move
the pole to the origin.)

Since linear fractional transformations of the form (2.1.5) map circles to cir-
cles and lines to lines, the preceding exercise shows that Theorem 2.2.1 can be
proved more directly by showing that the inversion r(z) = 1/z takes a circle or
line to a circle or line. The next exercises construct such a proof.
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24. Show that to prove Theorem 2.2.1, it is enough to prove that the inversion r
maps (a) lines not through the origin to circles, (b) circles not centered at the
origin to circles.

25. Show that the two cases in the preceding exercise can be reduced to (a) the line
{z : Imz = 1} and (b) a circle with center 1.

26. Suppose that L is the line {z : Imz = 1}. We can expect r(L) to be symmetric
with respect to reflection about the real axis. Since r(∞) = 0 and r(1) = 1, if
r(L) is a circle it should have center 1/2 and radius 1/2. Show that for every
real t, r(1+ it) lies on this circle.

27. Show that the preceding exercise implies that r takes each circle that passes
through the origin to a straight line. (Note that r is its own inverse.)

28. Suppose that C is a circle with center 1 and radius λ �= 1. By symmetry, r(C)
should be symmetric with respect to reflection about the real axis. If the image
is a circle, the images r(1±λ ) should be the endpoints of a diameter of r(C).
Assuming this, compute the center and radius of the corresponding circleC′ and
verify that each point of r(C) lies on the circle C′.

Remarks and further reading

Linear fractional transformations are a particularly important example of a group
of geometric transformations; see Chapter 3 and the references there. For a general
discussion of geometric transformations, see Kawakubo [74].

These transformations—especially various subgroups—also play a key role in
the study of conformal mapping and modular forms; see Chapters 5, 6, and 17.



Chapter 3
Hyperbolic geometry

Euclidean plane geometry is based on primitive notions of “point” and “line,”
fleshed out with notions of “distance” and “congruence.” Fundamental to the idea of
congruence are the distance-preserving motions: translations, rotations, and combi-
nations of these.

The euclidean axioms, or postulates, seemed self-evident, with the possible
exception of the parallel postulate. One version of this postulate says: given a line
L and a point P not on L, there is a unique line L′ through P that does not intersect
the line L. Much effort was expended in trying to derive this from the other, more
obvious, postulates/axioms.

In the early 19th century, Lobachevsky produced a geometry that satisfied the
other postulates of Euclid but violated the parallel postulate: given a point not on a
line, there are many lines through that point that do not intersect the given line.

Poincaré modeled Lobachevsky’s geometry in the upper half-plane C+. The
equivalent construction in the unit disk D is the focus of this chapter.

3.1 Distance-preserving transformations and “lines”

To model Lobachevsky’s geometry in D, we start by declaring what the lines and
the distance-preserving transformations will be. We then derive a distance function
to fit.

The basic assumption is that the role played by translations and rotations in
Euclidean plane geometry is to be played by the linear fractional transformations
that map the unit disk D onto itself. We denote this group of transformations by
Aut(D): the automorphism group of D. Recall from Section 2.3 that these are the
transformations f that have the form

f (z) = ω
z−a
āz−1

, |a|< 1, |ω|= 1. (3.1.1)
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It follows that f (0) = 0 if and only if f is a rotation: f (z) = ωz.
We will use the following additional properties of these transformations; see

Exercises 1 and 2.

Proposition 3.1.1. (a) Given two distinct points z1, z2 in D, there is a unique f ∈
Aut(D) such that

f (z1) = 0, 0 < f (z2)< 1. (3.1.2)

(b) Linear fractional transformations are conformal maps: if two smooth curves
meet a point z that is not a pole of the linear fractional transformation f , then the
angle between their images at f (z) is the same as the angle between the curves at z.

Our next task is to determine the “lines.” We start with an obvious choice of lines
in D: the diameters of D. We assume, as in Euclid, that there is exactly one line
through each pair of distinct points, and it follows that we have now accounted for
all the lines that pass through the origin. Since we want invariance under Aut(D), the
collection of lines through a given point a ∈ D must be the image of the diameters
under any linear fractional transformation that takes the origin to a. Note that it is
sufficient to consider images of the interval (−1,1). Theorem 2.2.1 tells us that,
for a �= 0, each such image is either a diameter or a circular arc. A diameter meets
the boundary of D in a right angle, so preservation of angles tells us that the image
meets the boundary of D in a right angle. If follows that each such image is either
itself a diagonal or is a circular arc that meets the boundary—the unit circle—at
right angles. Note that each such circular arc is contained in the sector determined
by the radii that meet the boundary at the same two points.

Conversely, suppose that C is a circular arc that meets the unit circle in right
angles. Choose f ∈ Aut(D) that maps two distinct points on C to points in (−1,1).
Thus f (C) is not contained in a proper sector, so f (C) is the interval (−1,1). Thus
C is the image of this diameter under f−1.

Summing up, we have identified precisely the lines of our geometry.

Proposition 3.1.2. The set of images of the diameter (−1,1) of D is the set consist-
ing of all diameters of D, and all circular arcs in D that meet the boundary in right
angles. This set is invariant under Aut(D).

Note that with this definition, there are many lines through a given point that are
parallel to a given line—see Figure 3.1.

3.2 Construction of a distance function

Next, we want to equip D with a distance function ρ . The most basic properties
demanded of ρ are

ρ(z,z) = 0, ρ(z1,z2) = ρ(z2,z1) > 0 if z1 �= z2. (3.2.1)
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P

L

L1

L2

Fig. 3.1 Two lines through P parallel to L

We want the elements of Aut(D) to be distance-preserving:

ρ( f (z), f (w)) = ρ(z,w), all f ∈ Aut(D). (3.2.2)

To pin down a scale, we require that ρ look like the euclidean distance near z= 0:

lim
z→0

ρ(0,z)
|z| = 1. (3.2.3)

We also want the lines for this geometry to be the geodesics: the shortest paths
from one point to another. A characteristic of geodesics is additivity of distance: if
distinct points z1, z2, and z3 lie on the same line, and z2 lies between z1 and z3, then
we should have

ρ(z1,z3) = ρ(z1,z2)+ρ(z2,z3). (3.2.4)

Theorem 3.2.1. There is a unique function ρ : D×D → R that satisfies (3.2.1),
has the invariance and scale properties (3.2.2) and (3.2.3), and has the additivity
property (3.2.4) when the z j lie on a line and z2 is between z1 and z3.

Proof: We could establish the existence of such a function ρ by writing down a
formula and verifying (3.2.1)–(3.2.4). It is more illuminating to show how such a
function can be constructed uniquely by first assuming these properties.

Suppose, then, that ρ is such a function. Invariance under rotation implies that

ρ(0,z) = ρ(0, |z|). (3.2.5)

We use invariance under linear fractional transformations to reduce (3.2.4) to a spe-
cial case, and then determine the solution.

For convenience we abuse notation and write ρ also as a function of r, 0 ≤ r< 1:

ρ(0,z) = ρ(0, |z|) = ρ(|z|). (3.2.6)

Given points 0 < r < r+δ < 1, we use the map
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fr(z) =
z− r

1− rz
. (3.2.7)

Then

fr(r) = 0, fr(r+δ ) =
δ

1− r(r+δ )
=

δ
1− r2 +O(δ 2) (3.2.8)

as δ → 0. The additivity condition (3.2.4) becomes

ρ(r+δ ) = ρ(r)+ρ(r,r+δ ) = ρ(r)+ρ
(

δ
1− r(r+δ )

)
. (3.2.9)

We let δ → 0+ and use (3.2.8) and the normalization (3.2.3) to conclude that

ρ ′(r) = lim
δ→0

ρ(r+δ )−ρ(r)
δ

=
1

1− r2 =
1
2

[
1

1+ r
+

1
1− r

]
. (3.2.10)

(Technically, we have only established this for a one-sided derivative, but the argu-
ment is easily adapted for r−δ in place of r+δ .)

We want ρ(0) = 0, so we may integrate (3.2.10) to get

ρ(r) =
1
2

log

(
1+ r
1− r

)
.

Using invariance, we may explicitly compute ρ(z1,z2) for each pair z1, z2. The
unique linear fractional transformation f such that f (z1) = 0 and f (z2) > 0 has
the form

f (z) = ω
z− z1

1− z̄1 z
(3.2.11)

for suitable ω with |ω|= 1. Some calculation yields

ρ(z1,z2) = ρ(| f (z2)|) =
1
2

log
|1− z̄1 z2|+ |z2 − z1|
|1− z̄1 z2|− |z2 − z1| , (3.2.12)

Exercise 6.
In particular, for z1 = r, z2 = s, real, with r < s,

ρ(r,s) =
1
2

log
(1− rs)+ |s− r|
(1− rs)−|s− r| =

1
2

log
(1− r)(1+ s)
(1+ r)(1− s)

. (3.2.13)

Clearly the symmetry and positivity conditions (3.2.1) are satisfied.
The argument to this point shows that there is at most one function ρ that satisfies

all the conditions. Let us show that ρ given by (3.2.12) is invariant under Aut(D).
Suppose that z1, z2 are distinct points of D. We have defined

ρ(z1,z2) = ρ( f (z2)),

where f is the unique element of Aut(D) such that f (z1) = 0 and f (z2)> 0. Suppose
that g ∈ Aut(D) and g(z j) = wj. Then h= f ◦g−1 is the unique map in Aut(D) such
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that h(w1) = f (z1) = 0 and h(w2) = f (z2)> 0. Therefore

ρ(g(z1),g(z2)) = ρ(h(w1),h(w2)) = ρ( f (z1), f (z2)) = ρ(z1,z2).

It remains to check the full additivity property. Using invariance, we may take
the three points to be −1 < r < s< t < 1. Then (3.2.13) gives

ρ(r,s)+ρ(s, t) =
1
2

log
(1+ r)(1− s)(1+ s)(1− t)
(1− r)(1+ s)(1− s)(1+ t)

=
1
2

log
(1+ r)(1− t)
(1− r)(1+ t)

= ρ(r, t). �

Note that ρ(z1,z2)→ ∞ if |z2| → 1: the lines in this geometry, as measured by ρ ,
are infinitely long.

3.3 The triangle inequality

The final steps in the analysis are to show that the distance function ρ is a metric
and that the lines are the geodesics. To show that ρ is a metric, we need to verify the
triangle inequality

ρ(z1,z3) ≤ ρ(z1,z2)+ρ(z2,z3). (3.3.1)

Theorem 3.3.1. The distance function ρ is a metric. In fact strict inequality holds
in (3.3.1) unless the points z1,z2,z3 lie in order on the same line.

Proof: Note that the ρ-circles

Cr(z) = {w ∈ D : ρ(z,w) = r}
are circles in the euclidean geometry. In fact the case z = 0 is (3.2.3). The gen-
eral case follows from this because the linear fractional transformations in question
preserve ρ and map circles inside D to circles inside D.

Consider (3.3.1). We may assume that z1 and z3 lie on the diameter (−1,1). If
ρ(z1,z2) > ρ(z1,z3), there is nothing to prove. If ρ(z1,z2) = ρ(z1,z3), then z2 lies
on a circle all of whose points except z3 itself have positive distance to z3. Therefore
the inequality is strict unless z2 = z3. Finally, suppose ρ(z1,z2) = r < ρ(z1,z3) = t.
The additivity property implies that the ρ-circles

Cr(z1), Ct−r(z3)

meet at a single point between z1 and z3 on the real line. By assumption z2 lies on
Cr(z1), so the inequality is strict unless z2 lies on the real line, between z1 and z3.
�

The metric ρ is called the Lobachevsky metric or the hyperbolic metric .
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Corollary 3.3.2. The lines inD are geodesics for the metric ρ , i.e. given two distinct
points z1,z2 of D, the shortest curve from z1 to z2 is the arc from z1 to z2 along the
line that joins z1 and z2.

Proof: Suppose that γ : [a,b]→D is a continuous curve from z1 to z2. By definition,
the length of γ is the limit as max j |x j+1 − x j| → 0 of

n

∑
j=1

ρ(γ(x j−1),γ(x j)), a= x0 < x1 < · · ·< xn = b.

In view of Theorem 3.3.1, this sum will be minimal if and only if each successive
triple of points lies on a line. If so, then all the points lie on the same line and the
sum is ρ(z1,z2), independent of the partition of the interval [a,b]. �

3.4 Distance and area elements

The normalization (3.2.3) was chosen so that the Lobachevsky metric is asymp-
totically the euclidean metric near z = 0. To understand the behavior near another
point z ∈ D, we may use invariance under rotation and take z = r > 0. The metric
is asymptotically a multiple of the euclidean metric in small neighborhoods of r. To
compute the multiple we look at the distance from r to r+ ε for small ε > 0:

ρ(r,r+ ε) =
ρ(r+ ε)−ρ(r)

ε
· ε ≈ ρ ′(r) · ε =

ε
1− r2 .

Thus, asymptotically near a point z ∈ D, the Lobachevsky metric is the euclidean
metric inflated by 1/(1−|z|2). In differential-geometric terms, it has a Riemannian
metric

ds2 =
dx2 +dy2

(1− r2)2 . (3.4.1)

It follows that the appropriate scaling of area is

dxdy
(1− r2)2 =

r drdθ
(1− r2)2 . (3.4.2)

In particular, the disk D itself has infinite area. However hyperbolic polygons in D

have finite area—see Exercise 9.

Given that one can map D to the upper half-plane C+ and C+ to D by linear
fractional transformations, it is clear that one can also model Lobachevsky geometry
in C+. See the exercises starting with Exercise 10.
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Exercises

In the following exercises, “line” means an image of the real interval (−1,1) under
an element of Aut(D), i.e. a geodesic for ρ .

1. Prove that for distinct z1, z2 in D there is a unique f ∈Aut(D) such that f (z1)=0
and f (z2)> 0.

2. Show that every linear fractional transformation f preserves angles: if two
smooth curves γ1, γ2 cross at a point z that is not a pole of f , then the angle
between the tangent vectors to their images f ◦ γ1, f ◦ γ2 at f (z) is the same as
the angle between the tangent vectors to the curves at z. (Hint: f ′(z) �= 0.)

3. Given a line L in D and a point z∈D, not on L, show that there is a unique linear
fractional transformation f ∈ Aut(D) such that f (L) is the horizontal diameter
(−1,1) and f (z) is on the positive imaginary axis.

4. Show that any two points in D are joined by a unique line. (In this and the
exercises to follow, it helps to use invariance to reduce to a special case.)

5. If L ⊂ D is a line and a ∈ D is a point not on L, show that there are infinitely
many lines that pass through a and do not meet L. Thus this geometry is decid-
edly non-euclidean.

6. Verify the calculation leading to (3.2.12).
7. Show that, with the exception of z= 0, the euclidean center of the Lobachevsky

circle Cr(z) is not z: it lies closer to the boundary.
8. Show that the shortest distance from a point z in D to a line L is the distance

from z to L along the (unique) geodesic through z that meets L in a right angle.
9. A (hyperbolic) polygon in D is a figure with vertices z1,z2, . . .zn, n ≥ 3, that

are distinct points of the closure of D, and sides that are portions of lines in D.
Show that a polygon has finite hyperbolic area.

10. Use the Cayley transform and its inverse to construct a metric ρ+ on C+ that is
invariant under the linear fractional transformations that map C+ onto itself and
has the positive imaginary axis as a geodesic. Here the standard normalization
is

lim
z→i

ρ+(z, i)
|z− i| = 1. (3.4.3)

11. What are the lines/geodesics in C+?
12. Give a direct construction of the metric ρ+ of the preceding exercise by follow-

ing the pattern used here for ρ . Use additivity and (3.4.3) to determine ρ+ on
the positive imaginary axis, and use invariance to define ρ generally on C+.

13. Compute the local behavior of the Lobachevsky metric at a general point of C+.
14. What is the analogue for C+ of the Riemannian metric formula (3.4.1)?
15. What is the analogue for C+ of the area element (3.4.2)?
16. Show that a (hyperbolic) polygon in C+ has finite area.
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Remarks and further reading

Siegel [127] contains an efficient introduction to the subject. The half-plane model,
in particular, plays a decisive role in geometry of three-manifolds; see Hubbard [68],
Stahl [129], and Marden [97].



Chapter 4
Harmonic functions

Harmonic functions of two variables are closely related to holomorphic functions;
in fact the real and imaginary parts of a holomorphic function are each harmonic.
Conversely, at least locally, a real-valued harmonic function is the real part of a
holomorphic function. A mean value property of these functions leads to analogues
of the maximum modulus principle and its strong version.

Harmonic functions play a key role in the study of conformal mapping, via an
important reflection property proved by Schwarz. The solution of the Dirichlet prob-
lem for a disk—finding a harmonic function with assigned values on the boundary
of the disk—leads directly to important results for Fourier series and approximation,
including two approximation theorems of Weierstrass.

Throughout this chapter we identify R
2 with C in the usual way, and treat func-

tions interchangeably in the form u(x,y) or u(x+ iy).

4.1 Harmonic functions and holomorphic functions

A twice continuously differentiable function u(x,y) defined on some open subset Ω
of the plane is said to be harmonic if it satisfies Laplace’s equation

uxx +uyy = 0. (4.1.1)

Suppose u and v are real-valued, and set f (x+ iy) = u(x,y)+ iv(x,y). Recall that
the necessary and sufficient conditions for f to be holomorphic are the Cauchy–
Riemann equations

vx = −uy, vy = ux. (4.1.2)

Suppose these equations are satisfied. Differentiating them shows that u and v are
harmonic:

uxx +uyy = vyx − vxy = 0 = uxy −uyx = vxx + vyy.
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Proposition 4.1.1. The real part of a holomorphic function is harmonic. Conversely,
if u is a real-valued harmonic function in a disk D = {z : |z−a|< R}, then there is
a function f holomorphic in D such that Re f = u.

Proof: The first statement has already been verified. For the converse, we want to
construct a real-valued function v, defined in D, such that u and v satisfy the Cauchy–
Riemann equations (4.1.2). After a translation, we may assume that z0 = 0. We look
for v with v(0) = 0. Since v(x,y) would be the value at s = 1 of v(sx,sy), we should
have

v(x,y) =
∫ 1

0

d
ds

{v(sx,sy)}ds =
∫ 1

0
[xvx(sx,sy)+ yvy(sx,sy)]ds.

If (4.1.2) is to hold, this would be the same as

v(x,y) =
∫ 1

0
[−xuy(sx,sy)+ yux(sx,sy)]ds. (4.1.3)

Thus we define v in D by (4.1.3). Differentiating (4.1.3) with respect to x and to y
shows that v is a solution of (4.1.2); see Exercise 1. �

4.2 The mean value property, the maximum principle, and
Poisson’s formula

We need some properties of harmonic functions. One such property is the mean
value property: the value at a point z0 in the domain of definition of u is the average
value over nearby circles centered at that point:

u(z0) =
1
2π

∫ 2π

0
u(z0+ reiθ )dθ . (4.2.1)

In fact, by Proposition 4.1.1, u is the real part of a function f that is holomorphic in
a disk centered at z0. Taking the real part of the Cauchy integral formula gives the
result—see (1.2.4).

Corollary 4.2.1. (Maximum principle) If a real function is harmonic on a bounded
domain Ω and continuous on the closure of Ω , then its minimum and maximum
values are attained on the boundary.

Proof: The value of u at a point z0 ∈ Ω lies between the minimum and maximum
values of u on nearby circles. Follow shrinking overlapping circles along a curve
leading to the boundary to find a sequence of values ≤ u(z0) and a sequence of
values ≥ u(z0). �
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Corollary 4.2.2. (Strong maximum principle) Suppose that u is a real function, har-
monic in a connected open domain Ω . If u attains a maximum or minimum at a point
of Ω , then u is constant.

Proof: Suppose that an extreme value occurs at a point z0 ∈ Ω . It follows from
(4.2.1) that u has constant value u(z0) on every small disk centered at z0; see Exer-
cise 8. Since Ω is assumed to be connected, the union of all disks on which u has
this same value is all of Ω . �

Formula (4.2.1) gives a very partial analogue, for harmonic functions, of Cauchy’s
formula. Let us look for a fuller analogue: a formula that expresses the value at each
point of a disk as an integral over the circle that bounds the disk. In fact we want to
do more—to solve the Dirichlet problem for the disk: given a continuous function
f on the boundary, find a function u, harmonic on the disk, that has f as limit on the
boundary. We assume for convenience that the disk is the unit diskD. The basic idea
is to expand the (desired) function in terms of a nice family of harmonic functions:
the monomials zn and their complex conjugates z̄n:

u(z) = a0+
∞

∑
n=1

anzn +
∞

∑
n=1

a−nz̄n

=
∞

∑
n=−∞

anr|n|einθ , |z|= r < 1.

In particular, on the boundary r = 1 we want, at least formally,

f (θ) = u(eiθ ) =
∞

∑
n=−∞

aneinθ . (4.2.2)

The question is: how to choose the {an}? It is easily verified that

1
2π

∫ π

−π
einθ e−imθ dθ =

{
1 if n = m;
0 if n �= m.

(4.2.3)

Therefore a formal calculation, integrating (4.2.2) against e−inθ , gives

an =
1
2π

∫ π

−π
f (θ)e−inθ dθ .

Let us define an by this integral. Then |an| ≤ sup | f (θ)|, so the series
∞

∑
−∞

an r|n|einθ

converges uniformly for 0 ≤ r ≤ 1− δ , δ > 0. The derivatives of any order also
converge uniformly on these smaller disks, confirming that u is harmonic. Inserting
the definition of an, we have
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u(r eiθ ) =
1
2π

∫ π

−π
f (ϕ)Pr(θ −ϕ)dϕ, (4.2.4)

where the Poisson kernel Pr(θ) is defined for 0≤ r < 1 by

Pr(θ) =
∞

∑
n=−∞

r|n|(eiθ )n

=
∞

∑
n=0

(reiθ )n +
∞

∑
n=0

(re−iθ )n −1

=
1

1− reiθ +
1

1− re−iθ −1

=
1− r2

1−2r cosθ + r2
> 0. (4.2.5)

The first formula for Pr, together with (4.2.3), implies that

1
2π

∫ π

−π
Pr(θ)dθ = 1. (4.2.6)

Moreover, given 0< δ < 1, if cosθ ≤ 1−δ then

Pr(θ) ≤ 1− r2

1−2r(1−δ )+ r2
=

1− r2

(1− r)2+2rδ
≤ 1− r2

2rδ
. (4.2.7)

Thus, as r → 1, Pr(θ) is more and more highly concentrated around θ = 0. Because
of this and uniform continuity of f , it follows that ur(θ) = u(reiθ ) converges uni-
formly to f (θ) as r → 1; see Exercise 10.

Summarizing, we have the following.

Theorem 4.2.3. Suppose that f is a continuous function on the unit circle. Then
there is a unique function u, harmonic in the unit disk D, continuous on the closure,
and equal to f on the circle. For z = reiθ ∈ D, u is given by the formula

u(reiθ ) =
1
2π

∫ π

−π
f (ϕ)Pr(θ −ϕ)dϕ, (4.2.8)

where Pr is given by (4.2.5).

(Uniqueness is a consequence of the maximum principle.)

Translating and rescaling, an analogous result holds for any disk: Exercise 5.
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4.3 The Schwarz reflection principle

A consequence of Theorem 4.2.3 that is very important for the theory of conformal
mapping is the Schwarz reflection principle. It comes in two forms—and in one
more form in the next chapter.

Theorem 4.3.1. Suppose that Ω is a domain that is invariant under z → z̄, and that
I =Ω ∩R is not empty. Suppose that u is harmonic in Ω+ =Ω ∩C+, the intersection
of Ω with {z : Imz > 0} and that

lim
z∈Ω+,z→I

u(z) = 0.

Then the extension of u to Ω that is defined on I and on Ω− = Ω ∩{z : Imz < 0} by

u(z) = 0, z ∈ I, u(z) = −u(z̄), z ∈ Ω−, (4.3.1)

is harmonic in Ω .

Proof: Calculation of the derivatives shows that the extension is harmonic on Ω−, so
we need only show that it is harmonic near points of I. Suppose z0 ∈ I and suppose
that the closure of the disk D = Dρ(z0) = {z : |z− z0|< ρ} of radius ρ is contained
in Ω . There is a function u∗, harmonic in D, that agrees with u on the boundary
of D. It can be checked from the formula (4.2.8), adapted to D, that the condition
(4.3.1) on the circle that bounds D implies that u∗ satisfies (4.3.1) throughout D.
In particular, u∗ = 0 on the intersection of D with I. Thus u∗ agrees with u on the
boundary of the upper half-disk D+, so u∗ agrees with u on D+, and thus on the
entire disk D. This shows that u is harmonic near each point of I. �

Theorem 4.3.1 allows for a strengthening of the reflection principle for holomor-
phic functions, Theorem 1.6.1:

Theorem 4.3.2. Let Ω be as in Theorem 4.3.1. Suppose that f is holomorphic in
Ω+, and that

Im f (z) → 0 as z → R, z ∈ C+.

Then f extends to be holomorphic on all of Ω by taking

f (z) = f (z̄), z ∈ Ω−. (4.3.2)

Proof: It is enough to prove the result in the case of a disk D with center on the
real axis. Let u be the imaginary part of f . By Theorem 4.3.1, u extends across R
to the lower half of D. By Proposition 4.1.1, u is the real part of a function g that is
holomorphic in D. In the upper half-disk, u is the real part of −i f . It follows that
f −ig is a real constant c on the upper half disk. Therefore ig+ c is the extension
of f to the disk. Since ig+c is real on D∩R, it follows from the standard reflection
principle, Theorem 1.6.1, that (4.3.2) is the extension of f . �
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4.4 Application: approximation theorems

Another consequence of the argument that led to Theorem 4.2.3 is a simple proof of
one of two approximation theorems of Weierstrass; see Exercise 11.

Theorem 4.4.1. (Weierstrass) Suppose that f : R → C is a continuous complex-
valued function with period 2π: f (x+ 2π) = f (x). Then f can be approximated
uniformly by trigonometric polynomials, i.e. functions of the form

g(x) =
n

∑
k=−n

akeikx.

The other well-known Weierstrass approximation theorem can be deduced from
Theorem 4.4.1; see Exercise 12.

Theorem 4.4.2. (Weierstrass) Suppose that f is a continuous complex-valued func-
tion defined on a bounded real interval [a,b]. Then f can be approximated uniformly
by polynomials.

Theorem 4.4.1 also allows us to flesh out some of the discussion of Hilbert spaces
in Chapter 1. In fact it leads to a natural relationship between the two spaces intro-
duced there: the space l2(Z) of two-sided complex sequences x = {xn}∞

n=−∞ with
inner product

(x,y) =
∞

∑
n=−∞

xnȳn,

and the space L2
per(R). The latter space is the completion of the space of continuous

functions u : R → C that are periodic with period 2π with respect to the metric
induced by the inner product

(u,w) =
1
2π

∫ π

−π
u(x)w(x)dx.

The orthogonality property (4.2.3) says that the functions

ϕn(x) = einx, n = 0,±1,±2, . . . (4.4.1)

are an orthonormal set in L2
per(R).

Theorem 4.4.3. (Riesz–Fischer) The functions (4.4.1) are an orthonormal basis for
the space L2

per(R). Therefore the mapping

u → {û(n)}∞
n=−∞, û(n) = (u,ϕn), (4.4.2)

is a bijective map from L2
per(R) to l2(Z) that preserves the inner product.
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Proof: By definition, if u belongs to the completion L2
per(R), then given ε > 0,

there is a continuous periodic function v such that ||u− v|| < ε/2. In view of The-
orem 4.4.1, there is an integer n and an element w in Hn, the span of {ϕ j, | j| ≤ n},
such that ||v−w||< ε/2. Therefore ||u−w||< ε . By Bessel’s inequality (1.9.5), the
element in Hn closest to u is

un =
n

∑
j=−n

(u,ϕ j)ϕ j =
n

∑
j=−n

û( j)ϕ j.

Therefore ||u−un|| < ε . We have shown that the sequence {un} converges to u, so
{ϕn} is a basis. Bessel’s equality (1.9.6) gives

||u||2 =
∞

∑
n=−∞

|û(n)|2.

Thus the sequence {û(n)}∞−∞ belongs to l2(Z) and has the same norm as u. We have
shown that the map (4.4.2) is injective.

Conversely, if the sequence a = {ak}∞−∞ belongs to l2(Z), set

un =
n

∑
k=−n

ak ϕk. (4.4.3)

Then {un} is a Cauchy sequence in L2
per(R). It follows from the Cauchy–Schwarz

inequality (1.9.4) that the Fourier coefficients û(k) of the limit u are

û(k) = lim
n→∞

ûn(k). (4.4.4)

But ûn(k) = ak for each n ≥ |k|. Therefore the map (4.4.2) is surjective. It is easily
checked that

(u,w) =
∞

∑
n=−∞

û(n) ŵ(n).
�

Exercises

1. Verify that if v is defined by (4.1.3), then the Cauchy–Riemann equations are
satisfied.

2. Suppose that Ω is simply connected, and suppose that u : Ω → R is harmonic.
Show that there is f : Ω → C such that f is holomorphic and Re f = u. Is f
unique?

3. Suppose that f : Ω1 → Ω2 is holomorphic and u : Ω2 → R is harmonic. Prove
that the composition u◦ f is harmonic.
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4. Suppose that u is real-valued, harmonic on C+, and continuous on the closure
C+∪R. Suppose also that u ≥ 0 on R. (a) Show that u is not necessarily non-

negative on C+.

(b) Show that if u(z) has a limit as z → ∞, then u is non-negative on C+.
5. Suppose that f is a continuous function on the circle {z : |z− z0| = R}. Find

an explicit formula for a function u that is harmonic in {z : |z− z0| < R} and
converges to f on the boundary.

6. (Harnack’s inequality) Suppose that f in Exercise 5 is real-valued.

(a) Prove that for |z− z0|= r < R,

|u(z)| ≤ 1
2π

R+ r
R− r

∫ 2π

0
|u(Reiθ )|dθ .

(b) Suppose that f ≥ 0. Prove that for |z− z0|= r < R,

1
2π

R− r
R+ r

∫ 2π

0
u(Reiθ )dθ ≤ u(z).

(c) Deduce from (a) and (b) that f ≥ 0 implies that if |z− z0|= r < R then

R− r
R+ r

u(z0) ≤ u(z) ≤ R+ r
R− r

u(z0).

7. (Harnack’s principle) Suppose that {un} is a non-decreasing sequence of func-
tions harmonic in a domain Ω . Prove that either un converges to a harmonic
function u, uniformly on each compact subset of Ω , or un converges to ∞, uni-
formly on each compact subset of Ω .

8. Prove the point that is taken for granted in the proof of Corollary 4.2.2: suppose
u is continuous on a circle |z− z0| = r and has values ≤ a on the circle. If the
mean value

1
2π

∫ 2π

0
u(z0+ reiθ )dθ = a, (4.4.5)

then u ≡ a on the circle.
9. Check that if f in Theorem 4.2.3 satisfies f (−θ) =− f (θ), then u(z̄) =−u(z).
10. Use (4.2.6) and (4.2.7) to fill in the details in the proof that the function u defined

by (4.2.8) is the solution to the Dirichlet problem with boundary value f , i.e.
that ur converges uniformly to f as r → 1.

11. Use the preceding exercise and the uniform convergence of the series for ur to
prove Theorem 4.4.1.

12. Use Theorem 4.4.1 to prove Theorem 4.4.2. (Note that the interval may be
rescaled and the function f extended, and also that convergence is only asked
for over some bounded interval.)

13. Fill in some details in the proof of Theorem 4.4.3: show that the sequence (4.4.3)
is a Cauchy sequence, and that the ak are the coefficients for the limit u.
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14. A periodic function f is said to have an absolutely convergent Fourier series if

|| f ||a ≡
∞

∑
n=−∞

|an| < ∞, an =
1
2π

∫ π

−π
f (x)e−inx dx.

(a) Suppose this is the case. Prove that the series

∞

∑
n=−∞

aneinx (4.4.6)

converges uniformly to f . Deduce that f is bounded and uniformly continuous.

(b) Suppose also that f ′ is bounded. Prove that |a0| ≤ sup | f (x)| and ∑n �=0 |an| ≤
sup | f ′(x)|.

15. A famous theorem of Wiener says that if f has an absolutely convergent Fourier
series and if, for each x, f (x) �= 0, then 1/ f has an absolutely convergent Fourier
series. This exercise relies on Exercise 14 and sketches a proof due to Newman
[106].

(a) We may suppose that f (x) ≥ 1, all x. Let P be a partial sum of the series
(4.4.6) chosen so that ||P− f ||a < 1/3. Let

S =
∞

∑
n=0

(P− f )n

Pn+1 .

Prove that the series converges in the norm || ||a, and that the limit has
an absolutely convergent Fourier series.

(b) Prove that S = 1/ f .

Remarks and further reading

This chapter merely touches on some large areas of real analysis. For more on har-
monic functions in R

n, see Axler, Bourdon, and Ramey [14]. Maximum principles
for solutions of partial differential equations are treated by Protter and Weinberger
[117] and Pucci and Serrin [118]. The classic treatise for Fourier series is Zygmund
[149]. There are many textbooks on Fourier analysis, e.g. Grafakos [52].

In complex analysis, harmonic functions are particular cases of subharmonic
functions (in one or several complex variables) and plurisubharmonic functions
(several complex variables); see Hayman and Kennedy [63], Hayman [62], and texts
on several complex variables, such as Krantz [79], Ohsawa [110], and Hörmander
[66].

The Poisson kernel is one example of the important concept of an approximate
identity; see Section 18.1.



Chapter 5
Conformal maps and the Riemann
mapping theorem

A conformal map is one that preserves angles. In the case of mappings from one
connected domain in C to another, such a map is holomorphic, or else its com-
plex conjugate is holomorphic. In this chapter we consider the question of existence
of an invertible holomorphic map from one domain to another. The fundamental
result is Riemann’s theorem: a simply connected plane domain that is not the whole
plane can be mapped bijectively onto the unit disk (or, equivalently, onto C+). The
proof relies on some clever uses of linear fractional transformations, together with
an important compactness result (for functions) of Ascoli–Arzelá.

The proof of the general form of the Riemann mapping theorem is not construc-
tive. When the domain Ω is a polygon, the Schwarz–Christoffel theorem establishes
the form of the inverse map from C+ to Ω .

In the final section of the chapter we touch on the subject of the inverses of
Riemann maps: conformal maps from the unit disk to a domain in C. The first steps
on the long road to de Brange’s proof of the Bieberbach conjecture are presented.

5.1 Conformal maps

A map F from an open subset Ω of R
2 into R

2 is said to be conformal if, for
each pair of smooth curves that pass through a point P of Ω , the angle between the
tangents of the image curves at F(P) is the same as the angle between the tangents
of the original curves at P. Write F(x,y) = (u(x,y),v(x,y)); the functions u and v
are assumed to have continuous first partial derivatives. It follows from the chain
rule that the map from tangent vector to tangent vector, written as column vectors,
is given by the matrix

A =
[

ux vx

uy vy

]
. (5.1.1)

In order for the images of non-zero angles to be well-defined, it is necessary and
sufficient that A be invertible. Let us assume for now that A preserves the direction
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of angles, as well as their magnitude. Then detA > 0. Suppose first that the basis
vector (1,0)t is mapped to a multiple of itself, (λ1,0)t . Then (0,1)t is mapped to
some (0,λ2)t and (1,1)t is mapped to (λ1,λ2)t . Preservation of angles and directions
implies that λ2 = λ1. It follows that λ 2

1 = detA and AtA = (detA) I, where I is the
identity matrix.

In the general case we may compose A with a rotation matrix

B =
[

cosα sinα
−sinα cosα

]

so that BA maps (1,0)t to a multiple of itself. Since BA preserves angle and direction,
the preceding argument shows that (BA)tBA = det(BA) I. Note that BtB = I, so

(detA) I = det(BA) I = (BA)tBA = AtBtBA = AtA.

Thus At = (detA)A−1: [
ux uy

vx vy

]
=

[
vy −vx

−uy ux

]
.

and we obtain the Cauchy–Riemann equations ux = vy, uy =−vx. Thus

f (x+ iy) = u(x,y)+ iv(x,y)

is holomorphic for (x,y) ∈ Ω . The same argument when A reverses the direction of
angles leads to the equations

ux = −vy, uy = vx.

These equations imply that

f (x+ iy) = u(x,y)− iv(x,y)

is holomorphic. Thus, identifying R
2 with the complex plane, we find that a con-

formal map is either a holomorphic map with non-vanishing derivative, or such a
holomorphic map followed by complex conjugation. It is enough to study the holo-
morphic case.

5.2 The Riemann mapping theorem

Given two domains in the complex plane, a natural question is whether there exists
a bijective holomorphic map from one onto the other. Linear fractional transforma-
tions are conformal maps: Exercise 2 of Chapter 3. Therefore we know that a half
plane can be mapped conformally onto a disk, or onto the region outside a circle in
the Riemann sphere S, and conversely. The function

√
z maps the right half plane to

a wedge with angle π/2, and so on. On the other hand, a holomorphic map from the
entire complex plane to a disk must be constant (Liouville’s theorem). Moreover it
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is easily seen that a bijective holomorphic image of a simply connected domain is
simply connected. Therefore neither the entire plane nor the plane minus a single
point can be mapped to the unit disk.

The definitive result is the following.

Theorem 5.2.1. (Riemann mapping theorem) If Ω is an open, simply connected,
proper subset of the plane, then there is a bijective holomorphic map f that maps
Ω onto the unit disk D.

Given a point z0 ∈ Ω , we may specify f (z0) = 0, f ′(z0)> 0, and these conditions
determine f uniquely.

The proof involves a number of steps. The first step is a reduction to the case of
bounded Ω . Choose a not in Ω . Then z− a is never zero on the simply connected
domain Ω , so we may choose a branch of

√
z−a that is holomorphic on Ω , see

Section 1.4. This branch maps Ω bijectively onto a domain Ω1. Choose a point
b ∈ Ω1. For some ε > 0, the disk {z : |z− b| < ε} is contained in Ω1. If z is in Ω1

then −z is not, so Ω1 lies outside the disk {z : |z+b|< ε}. The map z → 1/(z+b)
takes Ω1 bijectively onto a bounded domain Ω2. Thus we may replace Ω1 by Ω2,
and assume that Ω itself is bounded.

For the next step, choose a point z0 ∈ Ω and let F be the family of bijective
holomorphic maps f from Ω into the unit disk D such that f (z0) = 0 and f ′(z0)> 0.
Note that this family is not empty: f (z) = ε(z−z0) will belong to F if ε > 0 is small
enough.

Lemma 5.2.2. The family F contains a function f such that f ′(z0) ≥ g′(z0) for
each g ∈F .

Assuming this lemma, let us prove the Riemann mapping theorem. Suppose the
function f of Lemma 5.2.2 omits a point a ∈ D. Suppose first, for simplicity, that
a > 0. A branch of the square root can be chosen so that

g(z) =
√

z−a
az−1

is holomorphic on f (Ω)⊂D. The linear fractional transformation under the radical
sign maps D to D, so the composition g ◦ f maps Ω into D. Note that g(0) =

√
a.

Let

h(z) =
z−√

a√
az−1

, (5.2.1)

and let f1 = h◦g◦ f . Then f1 is bijective from Ω into D, and

f ′1(z0) = h′(
√

a)g′(0) f ′(z0). (5.2.2)



54 5 Conformal maps and the Riemann mapping theorem

But

g′(z) =
1

2g(z)
(az−1)−a(z−a)

(az−1)2 =
1

2g(z)
a2 −1

(az−1)2 ,

and

h′(z) =
(
√

az−1)−√
a(z−√

a)
(
√

az−1)2 =
a−1

(
√

az−1)2 ,

so

g′(0) =
a2 −1
2
√

a
, h′(

√
a) =

1
a−1

and

f ′1(z0) =
a+1
2
√

a
f ′(z0).

But since 0 < a < 1 we have a+ 1− 2
√

a = (1−√
a)2 > 0, so f ′1(z0) > f ′(z0),

contradicting the assumption that f ′(z0) is maximal.
The preceding argument assumed that f (Ω) omitted a point a∈D and that a> 0.

Otherwise, we may assume that the omitted point has the form ωa, where |ω| = 1
and a > 0, and take

f1(z) = ω h(g(ω̄ f (z))

with g and h defined as before. Again we find that f ′1(z0)> f ′(z0), a contradiction.
This contradiction shows that each function f of Lemma 5.2.2 maps onto D.

To complete the proof that Lemma 5.2.2 implies the Riemann mapping theorem,
we need to prove uniqueness. The key result here is a special case of Theorem 2.3.4.

Lemma 5.2.3. Suppose that f : D → D is a holomorphic bijection with f (0) = 0.
Then f is a rotation.

Suppose now that f and g are two mappings that have the properties of the map in
Lemma 5.2.2. Then h = g◦ f−1 maps D onto D and h(0) = 0. By Schwarz’s lemma,
h is a rotation. But h has derivative = 1 at z = 0, so h is the identity. Thus g = f .
This completes the argument that Lemma 5.2.2 implies Theorem 5.2.1.

5.3 Proof of Lemma 5.2.2; the Ascoli–Arzelà theorem

The first step is to establish some properties of the family F . Define Ωm, m =
1,2, . . . to be the subset of Ω consisting of points z whose distance to the boundary
is > 1/m, i.e. the closed disk {w : |w− z| ≤ 1/m} is contained in Ω . The closure
Ω m is compact.

For z in Ωm and f in F , we have the estimate

| f ′(z)| =
∣∣∣∣ 1
2πi

∫
|ζ−z|=1/2m

f (ζ )
(ζ − z)2 dζ

∣∣∣∣ ≤ 2m; (5.3.1)
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see Exercise 1. Thus, restricted to Ω m, the functions F are uniformly bounded (in
fact | f (z)| < 1) and uniformly equicontinuous: if z,w ∈ Ω m then | f (z)− f (w)| ≤
2m|z−w|. Let us take a sequence of functions fn in F such that

lim
n→∞

f ′n(z0) = sup
f∈F

f ′(z0).

By the Ascoli–Arzelá theorem (see below) there is a subsequence that converges
uniformly on Ω1. A further subsequence converges uniformly on Ω2, and a standard
argument gives us a subsequence that converges uniformly on each Ωm. The limit
f is a holomorphic function that maps Ω into D whose derivative f ′(z0) has the
desired maximum property. We need to show that f is bijective. Suppose that a1

and a2 are two distinct points of Ω and f (a1) = f (a2) = b. Choose disjoint circles
Cj around a j with the property that f (z)−b 
= 0 on C1∪C2, and f (z)−b has a single
zero, counting multiplicity, inside each of the circles Cj. Let r > 0 be a lower bound
for | f (z)−b| on the union of the Cj, and let n be so large that | fn(z)− f (z)|< r on
this union. By Rouché’s theorem, Theorem 1.3.7, fn(z)− b also has a zero inside
each circle, contradicting the assumption that the fn are bijective. Thus f is bijective.
�

To complete the argument, we need to prove the Ascoli–Arzelá theorem.

Theorem 5.3.1. (Ascoli–Arzelá) Suppose that { fn} is a uniformly bounded, uni-
formly equicontinuous family of real or complex-valued functions defined on a com-
pact set C. Then there is a subsequence that converges uniformly.

Proof: Assume first, for purpose of visualization, that the domain is the interval
[0,1], and the functions take values in [0,1]. Thus the graph of each function lies in
the unit square. Partition the range into intervals of length 1/4. Using the assumption
of uniform equicontinuity, we can partition the domain into closed intervals such
that if a,b lie in one such interval, then | fn(a)− fn(b)| < 1/4, for each n. This
partitions the square into closed rectangles, each with height 1/4. Let P1( fn) be
the union of the rectangles that are intersected by the graph of fn. This polygon
intersects each vertical line over the interior of an interval of the partition of the
domain in a segment of length at most 1/2,

There are only finitely many distinct such polygons P1( fn), so there must be such
a polygon P1 that contains the graphs of each term of a subsequence of the original
sequence. Any two elements fm, fn of this subsequence have | fn(x)− fm(x)| ≤ 1/2
for every x.

Now partition the range into subintervals of length 1/8. Choose a refinement of
the previous partition of the domain so that the variation over each new subinterval
is < 1/8. This gives a partition of P1 into closed rectangles of height 1/8. There
is a further subsequence whose graphs lie in a particular polygon P2 ⊂ P1 that has
vertical height ≤ 1/4 over each open subinterval of the domain. See Figure 5.1 for
an illustration of this stage of the construction.
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Fig. 5.1 The polygon P2( f )

Continuing in this way, taking terms with increasing subscripts from the succes-
sive subsequences, we get a subsequence that converges uniformly; see Exercise 2.
This argument generalizes easily, though less pictorially, to the general case. �

5.4 Boundary behavior of conformal maps

By itself, the Riemann mapping theorem tells us little about the behavior of the map
near the boundary. The one simple fact is the following.

Lemma 5.4.1. If f : Ω → D is a holomorphic bijection from a bounded domain Ω
onto the unit disk D, then | f (z)| → 1 as z → ∂Ω , the boundary of Ω .

Proof: Given ε > 0, let Cε be the inverse image of {z : |z| ≤ 1−ε}. This is a compact
subset of Ω , so it lies at some positive distance δ from ∂Ω . �

Theorem 5.4.2. (Schwarz reflection principle) With f as in the preceding propo-
sition, suppose that the boundary ∂Ω contains I, an open straight line segment or
an open circular arc, and suppose that points of Ω approach I from only one side.
Then f extends to be holomorphic in a neighborhood of I.

Proof: Since we can use a linear fractional transformation to straighten a circular
arc, it is enough to consider the case of a line segment I. Suppose z0 ∈ I. Choose r
small enough that the intersection of Ω with the disk Dr(z0) is a half-disk D+, and
the diameter of D+ is contained in I. We may also suppose that f has no zeros in
this half-disk. Choose a branch of log f defined on D+. By Lemma 5.4.1,

Re [log f (z)] = log | f (z)| → 0

as z approaches the bounding diameter. By Theorem 4.3.2, g = log f has a holomor-
phic extension to the whole disk, so the same is true of f = expg. �
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5.5 Mapping polygons: the Schwarz–Christoffel formula

The other way to look at the Riemann mapping theorem is that, given a simply
connected proper open subset Ω ⊂C, there is a holomorphic bijection from the unit
disk D onto Ω . In view of the fact that D and the half-plane C+ can be mapped
to each other by linear fractional transformations, one could as well consider the
question of mapping C+ to Ω . For the simplest cases, one can find the explicit form
of such a mapping.

Suppose that Ω is a simply connected plane domain whose boundary is a
polygon—a union of straight line segments—and that the portion of Ω near any such
segment lies on one side of that segment. Let f be a holomorphic bijection from Ω
onto the upper half plane. We know from Theorem 5.4.2 that f has a holomorphic
continuation across each of the sides of the polygon. By analyzing the behavior of
f near a corner, we can determine the form of the inverse map F : C+ → Ω . Note
that G(z) = F(1/z) maps R to the image of a side of P, which is either a line seg-
ment or a circular arc. Therefore G continues across the real axis near z = 0, so F is
holomorphic near ∞.

Theorem 5.5.1. (Schwarz–Christoffel) Let the domain P be a polygon in C with
vertices z1,z2, . . . ,zn and sides that are straight line segments. Suppose P lies to the
left of each segment as oriented from zk to zk+1, with zn+1 defined to be z1. Let αkπ ,
0 < αk < 2 be the angle, at zk, from the segment with endpoints zk and zk+1, to the
segment with endpoints zk−1 and zk; see Figure 5.2.

Suppose that F is a conformal map from C+ onto P. Then F has continuous
extension to the closure C+∪R. There are constants A and B such that

F(w) = A+B
∫ w

0

n

∏
k=1

(z−ak)αk−1 dz, (5.5.1)

where F(ak) = zk.

Remark. The sum of the angles of a triangle is π , and it can be deduced from this
fact that the sum of the interior angles of an n-sided polygon is (n−2)π . Thus

α1 +α1 + · · ·+αn = n−2. (5.5.2)

P

zk−1

zk

zk+1αkπ

Fig. 5.2 The angle at zk
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Therefore the integrand in (5.5.1) is O(|z|−2) as z → ∞, so the function defined by
(5.5.1) is bounded.

Let f : P → C+ be the inverse map. The proof of Theorem 5.5.1 begins with an
examination of f near a corner.

Lemma 5.5.2. The map f extends continuously to the closure of P. Let ak = f (zk).
The inverse function F extends to a full neighborhood of ak in the closure of C+ and
has the form

F(w) = zk +(w−ak)αk Hk(w), (5.5.3)

where Hk is holomorphic and non-zero in a neighborhood of ak.

Proof: Choose a branch of (z− zk)1/αk in the intersection of P with a small disk
centered at zk. The choice of the power means that the image is a half-disk: the
angle at zk has been changed to π . The map

g(ζ ) = f (zk +ζ αk)

maps this half-disk into C+. By Theorem 5.4.2, g continues holomorphically across
to the full disk. In particular, this implies that f continues across a neighborhood of
zk. Since f is injective, it follows that g′(0) 
= 0. Therefore there is a holomorphic
inverse G, defined near ak:

w = f (zk +G(w)αk),

or

F(w) = zk +(w−ak)αk

[
G(w)
w−ak

]αk

.

Now G(ak) = 0, so hk(w) = G(w)/(w− ak) is holomorphic and non-zero near ak.
Then Hk = hαk

k is holomorphic and non-zero near ak. �

Proof of Theorem 5.5.1. It follows from Lemma 5.5.2 that, in a neighborhood
of ak,

F ′(w) = [(w−ak)αk Hk(w)]
′ = (w−ak)αk−1[αkHk(w)+(w−ak)H ′

k(w)],

where Hk is holomorphic near ak. Therefore the function H defined by

H(w) =
n

∏
k=1

(w−ak)1−αk F ′(w) (5.5.4)

is holomorphic, with no zeros, in a neighborhood of the closed half-plane C+ ∪R.
We claim that argH is constant. Consider the argument of the restriction of H(w) to
R. The argument is a continuous function of w ∈ R. But the argument is also piece-
wise constant: the argument of each factor in the product (5.5.4) is constant between
the points ak Therefore argH(w) is constant for w ∈ R. Note that argH, being the
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imaginary part of logH, is harmonic. We would like to invoke the maximum princi-
ple and conclude that argH is constant on C+; however C+ is not bounded, so some
additional reasoning is needed. (Consider the function Imz, which vanishes on R

but not on C+.)
We noted earlier that F is holomorphic near ∞, and it follows that F ′(z) ∼ cz−2

as z → ∞. Combining this observation with (5.5.2), we see that H ∼ c, for some con-
stant c, as z → ∞. Therefore argz = argc on R and argz → argc as z → ∞. A simple
extension of the maximum principle shows that argH ≡ argc on C+: Exercise 4
of Chapter 4. A non-constant holomorphic function cannot take all its values in a
line, so H is constant. The Schwarz–Christoffel formula (5.5.1) follows by solving
(5.5.4) for F ′ and integrating. �

The representation (5.5.1) is only unique up to linear fractional transformations
that map C+ to itself, so we may choose three of the ak arbitrarily. In fact we can
send one of the ak to infinity. Suppose an 
= 0 and replace the factor (w− an)αn−1

with (
w
an

−1

)αn−1

and let an →±∞. Then (5.5.1) reduces to the form

F(w) = A+B
∫ w

0

n−1

∏
k=1

(z−ak)αk−1 dz, (5.5.5)

(with different constants A,B).

Let us count real parameters. It takes 2n real parameters to specify the vertices zk.
In the formula (5.5.1) there are n−1 independent angles, n−3 independent points
wk, and four real parameters in A and B. Thus the parameter count is consistent. Ne-
vertheless, although every such conformal map of C+ is given by a formula (5.5.1),
not every such formula produces a polygon with the desired properties. Assuming
that (5.5.2) holds, the image of R under (5.5.1) will be a closed polygonal line with
the specified angles, but this line may intersect itself in one or more places.

5.6 Triangles and rectangles

The simplest case of the formula in the form (5.5.5) gives the Schwarz triangle
functions:

F(u) =
∫ u

0
wα1−1(w−1)α2−1 dw. (5.6.1)

As to rectangles, we have our choice of two standard canonical forms:

F(u) =
∫ u

0

dw√
(1−w2)(1− k2w2)

, k > 0, k2 
= 1, (5.6.2)

and
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F(u) =
∫ u

0

dw√
w(w−1)(w−ρ)

, ρ > 1. (5.6.3)

The inverses of these functions are the principal subjects of Chapter 15 and Chapter
16, respectively.

For either the triangle functions (5.6.1), or the rectangle functions (5.6.2) or
(5.6.3), if we specify a side of the image, then the map F extends to a map of
C− = {z : Imz < 0} onto the reflection of the triangle or rectangle through that side,
so as to map the plane minus the complement of an interval holomorphically onto
the doubled triangle or rectangle.

For the rectangle as given by (5.6.2) or (5.6.3), this process can be iterated indef-
initely, giving a doubly periodic map of the plane to itself (with poles at the corners
of the various images of the original rectangle).

For the triangle maps, the process may or may not proceed indefinitely. For exam-
ple, if we fix a vertex of the triangle and reflect around successive sides having that
vertex, say in the clockwise direction, we eventually add a triangle that intersects
the original (open) triangle. Thus for consistency it is necessary that the new tri-
angle must coincide with the original triangle. Moreover the number of reflections
involved must be even, because otherwise the extended map will take the new trian-
gle to C−. Checking the angles at the fixed vertex, we see that the corresponding αk

must be the reciprocal of an even integer. For consistency, this must be true of each
vertex. This means that there are only four possible cases; see Exercise 7.

5.7 Univalent functions

The term univalent means single-valued, i.e. injective, not taking the same value
twice. In complex function theory the term is primarily used for holomorphic func-
tions, specifically for single-valued holomorphic functions defined on the disk D. If
f is such a function and f (D) = Ω , then the inverse f−1 = g : Ω → D is one of the
maps whose existence is guaranteed by the Riemann mapping theorem. By com-
posing with a (unique) affine map z → az+b we may impose additional conditions

f (0) = 0, f ′(0) = 1. (5.7.1)

Then the Maclaurin expansion (Taylor expansion at the origin) is

f (z) = z+a2z2 +a3z3 +a4z4 + . . . , |z|< 1. (5.7.2)

The set of univalent maps f that are defined on D and satisfy (5.7.1) is denoted S.
The S stands for schlicht, German for “simple.” Functions that belong to S are often
called schlicht functions.

The uniqueness part of the Riemann mapping theorem implies that if f and g are
in S, and f (D) = g(D), then f = g: Exercise 14. Therefore it is natural to examine
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relations between properties of the image Ω = f (D) and properties of the coeffi-
cients in the expansion (5.7.2).

A particularly important example comes about as follows: the linear fractional
transformation

f (z) =
1+ z
1− z

maps D to the right half plane {z : Rez > 0}. Therefore f (z)2 maps D to the com-
plement of the half-line {x : x ≤ 0}. We can adjust this to get a function in S by a
translation and dilation. The result is the Koebe function

K(z) =
1
4
[ f (z)2 − f (0)2] =

z
(1− z)2

= z+2z2 +3z3 +4z4 + . . . . (5.7.3)

The image of D under K is the complement of the half-line {x : x ≤ −1/4}. More
generally, given θ ∈ R, define

Kθ (z) = e−iθ K(eiθ z) = z+
∞

∑
n=2

anzn, an = nei(n−1)θ .

Then |an|= n, and the complement of the image Kθ (D) is a rotation of the half-line
{x : x ≤−1/4}.

The Koebe functions Kθ have a number of extremal properties among the func-
tions in S. Bieberbach proved in 1916 that for each f ∈ S, the term a2 in the expan-
sion (5.7.2) satisfies the estimate |a2| ≤ 2, with equality only if f is one of the
functions Kθ ; [23]. Bieberbach conjectured that |an| ≤ n for all n and all f ∈ S.
Throughout much of the 20th century various special cases of Bieberbach’s con-
jecture were proved: see Duren [40]. The full conjecture was finally proved by de
Branges in 1984 [34]. (De Brange’s original manuscript ran to 385 typed pages. The
proof was then considerably simplified by de Branges and others.) In this section we
present Bieberbach’s proof for the case n = 2.

If f belongs to S, then the function

g(z) =
1

f (1/z)
= z

[
1+a2z−1 +a3z−2 + . . .

]−1
, |z|> 1, (5.7.4)

is univalent and has a simple pole at ∞. Let us consider functions of this type:

h(z) = z+b0 +b1z−1 +b2z−2 +b3z−3 + . . . , |z|> 1. (5.7.5)

A key result is due to Gronwall [54]:

Theorem 5.7.1. (Area Theorem) If a function h given by the formula (5.7.5) is uni-
valent, then

∞

∑
n=1

n|bn|2 ≤ 1. (5.7.6)
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Proof: For r > 1, let Er be the complement of the image {h(z) : |z| ≥ r}, and let

Cr = {h(z) : |z|= r}.
Note that Cr is a simple closed curve that encloses Er. By (1.1.8), the area of Er is

Ar =
1
2i

∫
|z|=r

h(z)h′(z)dz

=
1
2

∫ 2π

0

[
re−iθ +

∞

∑
n=0

b̄nr−neinθ

][
reiθ −

∞

∑
m=1

mbmr−me−imθ

]
dθ .

The series converge uniformly, so we may take the product and integrate term-by-
term. Since

1
2

∫ 2π

0
eipθ dθ =

{
π if p = 0,

0 if p =±1,±2, . . . .

it follows that

Ar = π

[
r2 −

∞

∑
n=1

n|bn|2r−2n

]
.

Letting r decrease to 1, the limit of the left side is the outer measure m∗(E) of the
complement E of the image of the map h. Therefore

0 ≤ m∗(E) = π

[
1−

∞

∑
n=1

n|bn|2
]
. �

In particular, equality holds in (5.7.6) if and only if the complement of the image
of h has measure zero. If h = g has the form (5.7.4), where f belongs to S, then this
is equivalent to saying that the complement of the image of f has measure zero.

Corollary 5.7.2. If h given by (5.7.5) is univalent then for each n, |bn|2 ≤ 1/n. More-
over |b1| = 1 if and only if the complement of the image of h is a line segment of
length 4.

Proof: The first assertion is immediate. If |b1|= 1, then bn = 0 for n > 1:

h(z) = z+b0 +
b1

z
. (5.7.7)

Suppose first that b1 = 1. Then the product of the two solutions to h(z) = w is ≡ 1,
so there is a unique solution z in the complement of D unless both solutions have
modulus 1. This occurs if and only if w is in the line segment with endpoints b0 −2,
b0 + 2; Exercise 20. Replacing z with ω z, where ω2 = b1, reduces the problem to
the case with b1 replaced by 1 and b0 replaced by ω−1b0 so the exceptional set is
the line segment with endpoints ω−1b0 −2, ω−1b0 +2. �
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The remaining ingredient in Bieberbach’s proof is the square-root transforma-
tion. Suppose f belongs to S. Then

f (z2) = z2

[
1+

∞

∑
n=1

an+1z2n

]
, |z|< 1.

By assumption, f is univalent, so the term in brackets is never 0. Therefore we may
choose a branch of the square root that is 1 at z = 0 and define

f2(z) ≡ f (z2)1/2 = z
[
1+

a2

2
z2 + . . .

]
, |z|< 1.

This is easily seen to be single-valued, so it belongs to S.

Theorem 5.7.3. (Bieberbach) If f belongs to S and has the expansion (5.7.2), then
|a2| ≤ 2. The equality is strict unless f = Kθ for some θ .

Proof: Let

g(z) =
1

f2(1/z)
=

1

f (1/z2)1/2
= z− a2

2
z−1 + . . . . (5.7.8)

By Corollary 5.7.2, |a2| ≤ 2. Equality implies that

g(z) = z− eiθ

z
, (5.7.9)

for some θ ∈ R. It follows that f = Kθ . �

Exercises

1. Prove the estimate (5.3.1).
2. Prove the statement in the proof of the Ascoli–Arzelá theorem that a subse-

quence can be chosen so that it converges on each of the Ωm. (Hint: the con-
struction is known as the “diagonal process.”)

3. Suppose that the simply connected domain Ω , a proper subset of C, is invariant
under rotation by an angle 2π/k, k an integer ≥ 2, i.e. z ∈ Ω implies ωz ∈ Ω ,
where ω = exp(2πi/k). Show that 0 belongs to Ω . Show that the proof of the
Riemann mapping theorem can be adapted to show that there is a conformal
map f : Ω → D such that f (0) = 0 and such that f commutes with rotation by
2π/k: f (ωz) = ω f (z).

4. Find the image f (D) of the unit disk D for the functions:

(a) f (z) =− log(1− z). (b) f (z) = tan−1 z.
5. Show that the integral (5.5.1) has finite limits as w →±∞.
6. Show that the integral (5.5.5) has finite limits as w →±∞.
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7. Show that the inverse of the triangle map (5.6.1) extends to a meromorphic map
on the whole plane if and only if its angles are one of the three triples

{π
3
,

π
3
,

π
3

}
,

{π
2
,

π
3
,

π
6

}
,

{π
2
,

π
4
,

π
4

}
.

Show that in each case, the resulting function is doubly periodic. Note that in
the second case, there are two non-congruent triangles with this triple of angles.

8. Show that the image of D under the map

f (z) =
∫ z

0
(1− sn)−2/n ds, n ≥ 3,

is a regular n-sided polygon centered at the origin.
9. Suppose

f ′(z) = −2i

(
z− 1

z

)
.

Show that the constant of integration can be chosen so that f maps C+ onto
C\ J, where J consists of the two half-lines Rew =±π , Imw ≥ 0.

10. Suppose

f ′(z) =
z√

z2 −a2
.

Show that with the correct choices of a, the square root, and the constant of
integration, f maps C+ onto C+ \ J, where J is the interval from 0 to ia.

11. (a) Find a conformal map from the half-disk {z : |z|< 1, Imz > 0} onto C+.

(b) Find a conformal map from the half-disk onto the full disk D.
12. Find the image under f (z) = 1

2 (z+
1
z ) of the following:

(a) {z : |z|> 1};

(b) C+;

(c) {z : 1 < |z|, Imz > 0}.

(d) {z : |z|= r}, 0 < r 
= 1.
13. Given a > b > 0, a > 1, find a conformal map from the domain bounded by the

ellipses
x2

a2 +
y2

b2 = 1,
x2

a2 + k2 +
y2

b2 + k2 = 1;

onto a domain bounded by two circles x2 +y2 = r2, x2 +y2 = R2. (Hint: see (d)
of Exercise 12.)

14. Prove that if f and g belong to the set S of normalized univalent functions
defined on D, and f (D) = g(D), then f = g.

15. Show that each of the following functions belongs to the set S, and describe its
range f (D):
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(a) f (z) =
z

1− z
;

(b) f (z) =
z

1− z2 ;

(c) f (z) =
1
2

log
1+ z
1− z

;

(d) f (z) = z− 1
2

z2.

16. Suppose that ∑∞
n=2 n|an| ≤ 1. Prove that

f (z) = z+a2z2 +a3z3 + . . .

belongs to S.
17. Show that h given by (5.7.7) is univalent from {z : |z|> 1} onto the complement

of a line segment of length 4.
18. Show that (5.7.8) and (5.7.9) imply that f = Kθ .
19. Show that if f ∈ S and a is not in f (D), then the function

g(z) =
a f (z)

a− f (z)
= z+

(
a2 +

1
a

)
z2 + . . .

belongs to S.
20. Prove that z+b0/z+1 = w has a unique solution z with modulus |z|> 1 if and

only if w is not in the line segment [b0 −2,b0 +2].
21. Use Exercise 19 and Bieberbach’s theorem to prove the theorem known as the

Koebe one-quarter theorem: if f ∈ S then f (D) includes the disk D1/4(0) = {z :
|z| < 1/4}. Moreover f (D) includes a larger disk, unless f = Kθ for some θ .
(Actually Koebe proved that there was a δ > 0 such that Dδ (0) is included in
each f (D), and conjectured that the maximal such radius was 1/4. Bieberbach
proved Koebe’s conjecture.)

Remarks and further reading

Riemann’s version of Theorem 5.2.1 used some arguments that were only justified
(in part) later. For a succinct discussion of the history of Theorem 5.2.1, see Section
17.1 of Hille [64]. For a detailed account see Gray [53]. Ahlfors [5] contains an
efficient treatment of mappings of multiply connected domains. A classic account
of conformal mapping is that by Nehari [104]. For more, see Bell [17] and Kythe
[82].

Chapter 6 covers additional results related to the material in Sections 5.5 and 5.6
on mappings to polygons.

As noted above, much more information about univalent functions can be found
in Duren. For the interaction with deformation theory, see Lehto [87].
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An important generalization of a conformal map is a quasiconformal map. As
we have seen, a conformal map f , defined on a domain in C, that preserves ori-
entation satisfies the equation ∂̄ f = 0. (For the notation here, see Section 1.1.) A
quasiconformal map satisfies the Beltrami equation ∂̄ f = μ∂ f , with sup |μ(z)|< 1.
Quasiconformal maps are a fundamental tool in the study of deformations of certain
geometric structures; see Ahlfors and Bers [6]. Bers [22] provides a readable and
comprehensive overview. For more details, see Lehto [87].



Chapter 6
The Schwarzian derivative

The Schwarzian derivative of a function f is a rational function of the derivatives of
f to order 3. In fact it can be expressed in terms of the logarithmic derivative f ′′/ f ′
of f ′. Here we show that the Schwarzian derivative is a natural object: a measure of
the “curvature” of f , the pointwise deviation from a best approximation of f by a
linear fractional transformation.

The Schwarzian derivative was introduced by H. Schwarz in his study of con-
formal maps from the disk or half plane to a polygon—including polygons whose
sides may be arcs of circles rather than straight line segments. The global extension
of such a map, by continued reflection across boundaries, is not single-valued, in
general. Nevertheless its Schwarzian derivative is single-valued. A consequence is
that the extended map may be realized as the quotient of two single-valued functions
that are solutions of a second-order linear differential equation of special (Fuchsian)
type. In the case of a triangle or a regular curvilinear polygon, the map is a quotient
of two hypergeometric functions.

6.1 The Schwarzian derivative as measure of curvature

Suppose that γ : [a,b] → R
2 is a simple curve in the plane. The curvature of γ at

a point γ(t0) is a measure of the deviation of the image from the tangent line at
γ(t0). Equivalently, the curvature is a measure of the deviation of the function γ
from the affine transformation g(t)= γ(t)+γ ′(t)(t−t0). If we consider holomorphic
functions, and consider the complex plane as part of the Riemann sphere S, then
affine transformations play no special role—but linear fractional transformations do
play a special role.

Suppose that f is holomorphic in a neighborhood of a point z ∈C, and f ′(z) �= 0.
Given ε sufficiently close to 0, the points z,z+ ε,z+2ε,z+3ε all lie in the domain
of f . Consider the cross-ratio

[ f (z), f (z+ ε), f (z+2ε), f (z+3ε)]. (6.1.1)
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This is constant if f is a linear fractional transformation. In fact the cross-ratio is
invariant under linear fractional transformation. Therefore if f itself is a linear frac-
tional transformation, we may compose with g(z) = ε−1[ f−1(z)− z] and conclude
that (6.1.1) is equal to the cross-ratio [0,1,2,3], which is =−1/3.

It follows that the deviation of (6.1.1) from −1/3, for small ε , is a measure of the
deviation of f , at z, from being a linear fractional transformation. We shall see that
(6.1.1) is −1/3+O(ε2). Therefore the coefficient of ε2 in the expansion of (6.1.1)
is a measure of the curvature of f at z, in this sense.

To compute this coefficient, we take terms up to order O(ε3) in the Taylor expan-
sion of f at a given point z. The cross-ratio depends only on differences, so we may
subtract f (z) from each term of (6.1.1). The cross-ratio is homogeneous of degree
zero in its arguments, so we may divide each term by f ′(z)ε . This leads us to define

g1 =
f ′′(z)ε
2 f ′(z)

, g2 =
f ′′′(z)ε2

6 f ′(z)
. (6.1.2)

Then
f (z+ kε)− f (z)

ε f ′(z)
= k+ k2g1 + k3g2 +O(ε3).

Therefore

[ f (z), f (z+ ε), f (z+2ε), f (z+3ε)]
= [0, 1+g1 +g2, 2+4g1 +8g2, 3+9g1 +27g2]+O(ε3).

Taking into account the definition

[w0,w1,w2,w3] =
(w0 −w1)(w2 −w3)
(w0 −w3)(w2 −w1)

= − (w1 −w0)(w3 −w2)
(w3 −w0)(w2 −w1)

,

we have

−[0, 1+g1 +g2, 2+4g1 +8g2, 3+9g1 +27g2]

=
(1+g1 +g2)(1+5g1 +19g2)

3(1+3g1 +9g2)(1+3g1 +7g2)
+O(ε3)

=
1
3

1+6g1 +5g2
1 +20g2

1+6g1 +9g2
1 +16g2

+O(ε3)

=
1
3

1+(5g2
1 +20g2)(1+6g1)−1

1+(9g2
1 +16g2)(1+6g1)−1

+O(ε3)

=
1
3

1+5g2
1 +20g2

1+9g2
1 +16g2

+O(ε3)

=
1
3
(1+5g2

1 +20g2)(1−9g2
1 −16g2)+O(ε3)

=
1
3
(1−4g2

1 +4g2)+O(ε3).
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Plugging in the definitions (6.1.2),

[ f (z), f (z+ ε), f (z+2ε), f (z+3ε)]

=
1
3

[
1+

2
3
f ′′′(z)
f ′(z)

ε2 −
(

f ′′(z)
f (z)

)2

ε2

]
+O(ε3)

=
1
3
+

2
9
{ f ,z}ε2 +O(ε3),

where { f ,z} is the Schwarzian derivative (or simply the Schwarzian)

{ f ,z} =
f ′′′(z)
f ′(z)

− 3
2

(
f ′′(z)
f ′(z)

)2

=
(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

. (6.1.3)

Remark. The Schwarzian derivative of f has at most a double pole at a pole of f .
Therefore the Schwarzian of a meromorphic function is itself meromorphic.

6.2 Some properties of the Schwarzian

The Schwarzian has several important invariance properties.

Proposition 6.2.1. The Schwarzian derivative has the properties:

(a) The Schwarzian of a linear fractional transformation is zero.

(b) If f is meromorphic in a connected domain and { f ,z} ≡ 0, then f is a linear
fractional transformation.

(c) If f and g are smooth functions, then

{ f ◦g,z} = { f ,g(z)}g′(z)2 +{g,z}.

(d) If f is a smooth function and g is a linear fractional transformation, then

{g◦ f ,z} = { f ,z}.

(e) If f1 and f2 are meromorphic in a connected region and { f1,z} ≡ { f2,z},
then there is a linear fractional transformation g such that f2 = g◦ f1.

Proof: The proof can be reconstructed from the following suggestions. The details
are left as Exercise 2.

(a) This follows from the fact that for a linear fractional transformation f , (6.1.1)
is constant. It is also easily checked by direct calculation.

(b) Let F = f ′′/ f ′ and integrate the resulting equation (6.1.3) for F .

(c) Calculate.
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(d) Use (c) and (a).

(e) It is enough to prove this locally. In a domain in which f1 has an inverse h,
let g = f2 ◦h. Then f2 = g◦ f1. Use the assumption that { f2,z}= { f1,z}, together
with (c) and (b), to get the result. �

6.3 The Schwarzian and curves

Next, consider a smooth curve t → γ(t) in C, where the parameter t can be taken to
be either real or complex, and we assume that the derivative γ ′ is not zero. (When
the parameter is complex, it is more natural to think of γ as a function rather than a
curve.) Then γ can be considered as a curve in the Riemann sphere S, realized via an
equivalence relation in C

2; see Section 2.1. A lift of γ to C
2 consists of two curves

ϕ1, ϕ2 in C such that γ is represented as a quotient

γ = ϕ1/ϕ2. (6.3.1)

Theorem 6.3.1. Suppose that the map γ(t) : Ω →C is smooth, and γ ′ �= 0. Suppose
also that there is a single-valued branch of

√
γ ′ defined on Ω . Then there is a lift

γ = ϕ1/ϕ2 such that ϕ1 and ϕ2 are linearly independent solutions of the equation

ϕ ′′(t)+q(t)ϕ(t) = 0, (6.3.2)

where

q(t) =
1
2
{γ, t}. (6.3.3)

Conversely, given a function q, let ψ1 and ψ2 be linearly independent solutions
of (6.3.2). Then the quotient γ1 = ψ1/ψ2 also satisfies (6.3.3). There is a linear
fractional transformation g such that γ1 = g◦ γ .

Proof: Differentiating (6.3.1) gives

γ ′ =
ϕ ′

1ϕ2 −ϕ1ϕ ′
2

ϕ2
2

. (6.3.4)

Let us impose the additional condition

1 ≡ ϕ ′
1ϕ2 −ϕ1ϕ ′

2. (6.3.5)

Conditions (6.3.1) and (6.3.5) together imply that

γ ′ =
1

ϕ2
2

. (6.3.6)

Our assumption on the domain means that if we take ϕ2 = 1/
√

γ ′ and take
ϕ1 = γ/

√
γ ′, then both (6.3.4) and (6.3.6) are satisfied. Differentiating (6.3.5) and
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dividing by ϕ1ϕ2 we find a proportionality

ϕ ′′
j

ϕ j
= −q(t), j = 1,2.

Starting from (6.3.6) we see that

γ ′′

γ ′ = −2
ϕ ′

2

ϕ2
,

and (6.3.3) follows quickly. (Note that in this calculation, the constant 1 in (6.3.5)
may be replaced by any non-zero constant.)

Conversely, suppose ψ1, ψ2 are linearly independent solutions of (6.3.2). Linear
independence implies that the Wronskian ψ1ψ ′

2 −ψ ′
1ψ2 is not identically zero, and

differentiation shows that it is constant. The previous calculation shows that γ1 =
ψ1/ψ2 is a solution of (6.3.3).

Since γ1 and γ have the same Schwarzian derivative, the last assertion follows
from Proposition 6.2.1 (e). A more constructive derivation follows from the fact that
the space of solutions of a second-order equation like (6.3.2) is two-dimensional, so
there are constants a,b,c,d with ad−bc �= 0 such that

ψ1 = aϕ1 +bϕ2, ψ2 = cϕ1 +dϕ2.

It follows readily that

γ1 =
ψ1

ψ2
=

aγ +b
cγ +d

. �

6.4 The Riemann mapping function and the Schwarzian

Schwarz developed these ideas to study curvilinear polygons in the complex plane.
A curvilinear polygon P is a connected domain in C whose boundary consists of
finitely many vertices z1, z2, . . . , zn, zn+1 = z1, each successive pair joined by either
an arc of a circle or a segment of a straight line, and such that points of P approach
only one side of each of these arcs. Such regions arise, for example, as fundamental
domains in the study of automorphic functions—see Chapter 17.

We assume that the vertices are numbered so that P lies on the left of the bound-
ary arc or segment from zk−1 to zk, and that the two tangents at zk meet at an interior
angle παk, 0 < αk < 2, αk �= 1. This is the curvilinear analogue of Figure 5.2. By
the Riemann mapping theorem there is an invertible holomorphic map g that maps
such a domain P onto the upper half-plane C+. By the Schwarz reflection principle
g extends holomorphically across each of the arcs or segments that make up the
boundary of P. As in the case of an ordinary polygon (with straight line segments
making up the boundary), the map g also extends continuously at each vertex.
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Lemma 6.4.1. The mapping function g extends continuously to the boundary of P.

Proof: If the two sides that meet at zk are each straight line segments, then
Lemma 5.5.2 applies. Otherwise, since the extensions of the two sides to two full
circles, or to a line and a circle, are not tangent to each other at zk, these extensions
must meet at a second point wk. A linear fractional transformation G that takes wk

to ∞ maps both sides to straight lines. Therefore Lemma 5.5.2 applies to the compo-
sition g1 = g◦ (G−1), and we can conclude that g = g1 ◦G also has the extension
property. �

We propose now to study the inverse map f : C+ → P. Let ak be the image of
the vertex zk under (the extension of) g. We may assume that the zk are numbered
so that a1 < a2 < · · · < an. We know that f can be continued across each of the
open intervals (ak,ak+1), k < n and across the pair of intervals (an,∞)∪ (−∞,a1)
which, for convenience, we denote (an,an+1). Each continuation maps the lower
half plane to an image Pk of P “reflected” across the corresponding side with vertices
zk, zk+1. Having crossed one of the intervals from C+ to C−, one can cross back
through a different interval, and the new function on C+ maps to an image of Pk
reflected through a side of Pk. This process can be continued indefinitely, resulting
in a (generally) multi-valued holomorphic extension of f , with singular points at the
ak.

Let us pause to look more closely at the reflection process. The two simple mod-
els are the unit circle under the reflection z→ 1/z̄ and the real line under the reflec-
tion z → z̄. In general, for a circle with center a and radius r, a point z and its
reflection z′ are related by

(z′ −a)(z̄− ā) = r2.

For a line L passing through two points a1, a2, the linear fractional transformation

G(z) =
z−a1

a2 −a1

takes L to R, so a point z and its reflection are related by

0 = G(z′)−G(z) =
z′ −a1

a2 −a1
− z̄− ā1

ā2 − ā1
.

In each case the reflected point has the form z′ = H(z), where H is a linear frac-
tional transformation. Note that the composition of two such reflections is a linear
fractional transformation.

It follows from this discussion that, in the process of extending the mapping
function f , two different determinations of the values in C+ come from an even
number of reflections through sides of P. Thus these two determinations are related
by a linear fractional transformation. The same is true for different determinations
of values in C−.
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After these preliminaries, we are ready to discuss the Schwarzian derivative of
the extension fe of f .

Theorem 6.4.2. (Schwarz) Let fe be the extension of the conformal map f : C+ →
P, where P is a curvilinear polygon with vertices {zk = f (ak)}nk=1 and interior
angles {παk}nk=1. The Schwarzian derivative is the single-valued rational function

{ fe,w} =
1
2

n

∑
k=1

[
1−α2

k

(w−ak)2 +
2bk

w−ak

]
, (6.4.1)

where the bk are certain real numbers, and

0 =
n

∑
k=1

bk =
n

∑
k=1

(
2bkak+1−α2

k

)
=

n

∑
k=1

[
bka

2
k +(1−α2

k )ak
]
. (6.4.2)

Proof: The original map f is injective on C+, continuous up to the boundary R, and
differentiable except at the points ak. Therefore f ′ has no zeros here. The extension
of f across each of the intervals (ak,ak+1) is again injective, so the derivative of the
extension also has no zeros. This remains true for every subsequent extension of f .
Therefore { fe,w} is defined on the full extension. Since the Schwarzian is invariant
under linear fractional transformations, it follows that the various extensions of f
that lie over any point z other than the points {ak} have the same Schwarzian. Thus
{ fe,w} is holomorphic and single-valued in the plane minus the points {ak}.

Given k, let G be the linear fractional transformation used in the proof of
Lemma 6.4.1. Using invariance once again, near ak we may replace fe by fk =G◦ fe.
This mapping takes a neighborhood of f (ak) in R onto the two straight line segments
that are images under G of the sides of P that meet at zk. Since G is conformal, the
internal angle is again αkπ . As shown in Chapter 5, near ak

fk(w) = zk+(w−ak)αkhk(w), (6.4.3)

where hk is holomorphic near ak. Therefore

f ′k(w) = (w−ak)αk−1[αkhk(w)+(w−ak)h′k(w)]

and
f ′′k (w)
f ′k(w)

=
αk−1
w−ak

+ h̃k(w),

where h̃k is holomorphic near ak. It follows that, near ak,

{ fe,w} = { fk,w}

=
1−αk

(w−ak)2 − 1
2
(αk−1)2

(w−ak)2 − h̃k(w)
αk−1
w−ak

− 1
2
h̃2
k(w)+ h̃′k(w)

=
1−α2

k

2(w−ak)2 − h̃k(w)
αk−1
w−ak

− 1
2
h̃2
k(w)+ h̃′k(w).
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Thus the singularity of { f ,w} at ak is a double pole of the form in (6.4.1).
Now f is real on each interval (ak,ak+1). This follows once again from invari-

ance, since the corresponding side of P can be mapped to a real interval by a linear
fractional transformation H, and the corresponding map H ◦ f is real-valued on this
interval. Therefore the constants bk that occur as residues at the ak are real.

To show that { fe,w} is determined by its singularities, we note that fe is holomor-
phic at ∞: f (∞) lies in the image of one of the sides of P. This implies that { fe,w}w4

is holomorphic at ∞; see Exercise 3. Therefore each side of (6.4.1) approaches zero
at ∞. The difference between the left and right sides of (6.4.1) is an entire function,
and is therefore ≡ 0.

The identities (6.4.2) also follow from the fact that { f ,w} = O(z−4) at ∞; see
Exercise 4. �

Corollary 6.4.3. Under the assumptions of Theorem 6.4.2, the (extended) function
fe is the quotient of two independent solutions of the equation

ϕ ′′(z)+q(z)ϕ(z) = 0, (6.4.4)

where

q(z) =
1
4

n

∑
k=1

[
1−α2

k

(z−ak)2 +
2bk
z−ak

]
. (6.4.5)

An equation of the form (6.4.4), where q has the form (6.4.5), is said to be of
Fuchsian type, i.e. each point of singularity of q, including ∞, is a regular singular
point of the equation. For an equation of second order with meromorphic coeffi-
cients p j, this means that near each point a, the coefficients of

p2(z)u′′(z)+ p1(z)u′(z)+ p0(z)u(z)

satisfy
(z−a) p1(z)

p2(z)
= O(1),

(z−a)2 p0(z)
p2(z)

= O(1).

6.5 Triangles and hypergeometric functions

From this point on, we drop the subscript and write f for the extension of the inverse
of the Riemann map g.

In the case of a curvilinear triangle P, we may choose the points a j that map to
the vertices to be three arbitrary points of R, or of R∪{∞}. As is so often the case,
one chooses a1 = 0, a2 = 1, a3 = ∞. We need to re-examine the Schwarzian { f ,z}
near the point at ∞. If we take a3 to be ∞, the behavior (6.4.3) of f near w= ∞ is

f (w) = w−α3 h

(
1
w

)
.
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Then

f ′(w) = w−α3−1
[
−α3 h

(
1
w

)
− 1

w
h′

(
1
w

)]
,

f ′′(w) = w−α3−2(α3 +1)
[

α3 h

(
1
w

)
+

2
w
h′

(
1
w

)
+O(w−2)

]
.

It follows from this that as w→ ∞,

{ f ,w} =
1−α2

3

2w2 +O(w−3).

Therefore for each finite w,

{ f ,w} =
1−α2

1

2w2 +
b1

w
+

1−α2
2

2(w−1)2 +
b2

w−1
. (6.5.1)

In fact the difference between the left and right sides of (6.5.1) is an entire function
that vanishes at ∞. The coefficients b1, b2 can be determined by expanding in powers
of 1/w:

2b2 = α2
1 +α2

2 −α2
3 −1; b1 +b2 = 0.

Therefore

{ f ,w} =
1−α2

1

2w2 +
1−α2

2

2(w−1)2 +
α2

3 +1−α2
1 −α2

2

2w(1−w)
, (6.5.2)

and f is the quotient of two independent solutions of the equation

ϕ ′′(w)+
1
4

[
1−α2

1

w2 +
1−α2

2

(w−1)2 +
α2

3 +1−α2
1 −α2

2

w(1−w)

]
ϕ(w) = 0. (6.5.3)

This equation has singular points at 0, 1, and ∞, each of them regular. There is a
standard, much studied, example of such an equation: the Gauss hypergeometric
equation

z(1− z)u′′(z)+ [c− z(a+b+1)]u′(z)−abu(z) = 0, (6.5.4)

or
u′′(z)+Au′(z)+Bu(z) = 0, (6.5.5)

where

A =
c
z
+

c− (a+b+1)
1− z

, B=− ab
z(1− z)

.

We may convert an equation of the form (6.5.5) to the form (6.5.3) by writing u= vϕ
and choosing the function v so as to eliminate the coefficient of ϕ ′ in the equation
for ϕ that results from the equation (6.5.5) for u:

ϕ ′′+
[

2v′

v
+A

]
ϕ ′+

[
v′′

v
+A

v′

v
+B

]
ϕ = 0.
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Thus we want v′/v=−A/2. Then

v′′

v
=

(
v′

v

)′
+

(
v′

v

)2

= −A′

2
+

A2

4
,

v′

v
A = −A2

2
,

which leads to the equation

ϕ ′′+
[
−A′

2
− A2

4
+B

]
ϕ = 0. (6.5.6)

With A and B in (6.5.5), the coefficient of ϕ is

2c− c2

4z2 +
2d−d2

4(z−1)2 +
2cd−4ab
4z(1− z)

, d = a+b+1− c.

To get (6.5.3) we want

(1− c)2 = α2
1 , (1−d)2 = α2

2 , 2cd−4ab = α2
3 +1−α2

1 −α2
2 . (6.5.7)

Taking c= 1−α1, d = 1−α2, we find that a+b= 1− (α1 +α2). Then

α2
3 +1−α2

1 −α2
2 = α2

3 +1− (1− c)2 − (1−d)2

= α2
3 +1− (1− c)2 − (a+b− c)2

= α2
3 −2c2 −2c+2c(a+b)− (a+b)2

= α2
3 −2c(c−a−b−1)− (a−b)2 −4ab

= α2
3 +(2cd−4ab)− (a−b)2.

Thus we may satisfy all the equations of (6.5.7) by taking

a+b = 1− (α1 +a2), a−b = α3, c = 1−α1.

We do not need an explicit determination of the factor v (which is easily calculated),
since v drops out when we take the quotient ϕ0/ϕ1 = vu0/vu1, where the u j are
solutions of the hypergeometric equation (6.5.5).

The point of all this is that the solutions of (6.5.4) are very well-understood. For
example, (6.5.4) may be written in the form

[D(D+ c−1)− z(D+a)(D+b)]u(z) = 0, D = z
d
dz

. (6.5.8)

Since D[zν ] = νzν , the series expansion of a solution with u(0) = 1 is easily cal-
culated:

u0(z) = F(a,b;c,z) ≡
∞

∑
n=0

(a)n(b)n
(c)nn !

zn, c �= 0,−1,−2, . . . , (6.5.9)

where (a)n = a(a+ 1) · · ·(a+ n− 1), etc. There are also representations of this
function as an integral; for such a representation due to Euler see Exercise 15.
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The map z→ 1− z takes a solution of (6.5.5) to a solution of the equation with
different parameters. In particular, a second solution of (6.5.4), regular at z= 1, is

u1(z) = F(a,b;a+b+1− c;1− z) = F(a,b;d;1− z). (6.5.10)

By Theorem 6.3.1, the ratio u0/u1 is related to the map f by a linear fractional
transformation. Therefore it is the mapping function for a corresponding curvilinear
triangle. The original F can be recovered by choosing the linear fractional transfor-
mation g so that g◦ (u0/u1) maps {0,1,∞} to { f (0), f (1), f (∞)}, respectively.

Remark. For ordinary triangles (those with straight sides), the continuation of the
mapping function is itself single-valued in certain restricted cases (see Section 5.6).
The same is true, with much milder restrictions, for curvilinear triangles; see Exer-
cise 10.

6.6 Regular polygons and hypergeometric functions

Up to an affine transformation, a regular curvilinear polygon is one whose vertices
are equally spaced on the unit circle, say at the points zk = ωk = exp(2πik/n),
k= 0,1, . . . ,n−1, and all of whose angles are equal, say πα . A map f : D→ P can
be chosen in such a way that f commutes with rotation through an angle ω = 2π/n:

f (ωz) = ω f (z), (6.6.1)

and so that f (ωk) = ωk, see Problem 3 of Chapter 5. We may take advantage of this
symmetry to convert the corresponding equation of Fuchsian type to the hypergeo-
metric equation, and express f (z) as the quotient of two hypergeometric functions
of zn.

The original equation has the form

ϕ ′′(z)+q(z)ϕ(z) = 0, q(z) =
{ f ,z}

2
, (6.6.2)

where

{ f ,z} =
1
2

n−1

∑
k=0

[
1−α2

(z−ωk)2 +
2bk

z−ωk

]
, α =

ω
π

=
2
n
. (6.6.3)

Let f1(z) = f (ωz). Then it is easily seen that the Schwarzian satisfies

{ f1,z} = ω2{ f ,ωz}. (6.6.4)

On the other hand, (6.6.1) and the invariance properties of the Schwarzian imply
that

{ f1,z} = {ω f ,z} = { f ,z}. (6.6.5)
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Combining (6.6.4) and (6.6.5) we see that z2{ f ,z} is invariant under rotation by an
angle α = 2π/n. Putting the sum in (6.6.3) over a common denominator, and using
the rotation invariance, we find that

z2{ f ,z} =
Q(zn)

2(zn−1)2 ,

where Q is a polynomial of degree less than 2, with no constant term: Q(w) = aw.
Near z= 1 we have, for some constant a,

z2{ f ,z} =
azn

2(zn−1)2 =
(1−α2)z2

2(z−1)2 +O

(
1

z−1

)
.

Multiplying both sides by (z− 1)2 and taking the limit as z → 1, we find that a =
n2(1−α2). Thus

z2{ f ,z} =
n2(1−α2)zn

2(zn−1)2 . (6.6.6)

Let us write a solution ϕ of (6.6.2) as ϕ(z) = ψ(zn). Then equation (6.6.2), mul-
tiplied by z2 is

0 = z2[ψ(zn)]′′+
z2{ f ,z}

2
ψ(zn)

= n2z2nψ ′′(zn)+n(n−1)znψ ′(zn)+ z2 { f ,z}
2

ψ(zn).

Taking into account (6.6.6), we may change variables and write this as

ψ ′′(z)+
β
z

ψ ′(z)+
1−α2

4z(1− z)2 ψ(z) = 0, β = 1− 1
n
. (6.6.7)

As in the previous section, we seek to transform this into a hypergeometric equa-
tion (6.5.5) by writing u= vψ . As before the resulting equation for ψ is

ψ ′′+
(

2v′

v
+A

)
ψ ′+

(
v′′

v
+

v′

v
A+B

)
ψ = 0. (6.6.8)

In this case, we want to choose v so that

2v′

v
+A =

β
z
.

Then

v′′

v
=

(
v′

v

)′
+

(
v′

v

)2

= −A′

2
− β

2z2 +
1
4

(
A− β

z

)2

;

v′

v
A =

(
β
2z

− A
2

)
A.
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As in the calculation in the previous section, the lowest order coefficient in the
equation (6.6.8) is

−A′

2
− β

2z2 +
1
4

(
A− β

z

)2

− A2

2
+

βA
2z

+B (6.6.9)

=
(β −1)2 − (c−1)2

4z2 +
1− (d−1)2

4(1− z)2 +
2cd−4ab
4z(1− z)

. (6.6.10)

The resulting equation is

(β −1)2 − (c−1)2

4z2 +
1− (d−1)2

4(1− z)2 +
2cd−4ab
4z(1− z)

=
1−α2

4z(1− z)2 . (6.6.11)

A look at the behavior as z→ 0 and as z→ 1 shows that (c−1)2 = (β −1)2 = 1/n2,
so (6.6.11) reduces to

1− (d−1)2

1− z
+

2cd−4ab
z

=
1−α2

z(1− z)
=

1−α2

1− z
+

1−α2

z
.

Therefore
1− (d−1)2 = 2cd−4ab = 1−α2.

Since d−1 = a+b− c, we may take a+b= c−α . Then d = 1−α and

(a−b)2 = (a+b)2 −4ab = (c−α)2 −2cd+1−α2 = (c−1)2 =
1
n2 .

The associated hypergeometric equation can be taken to have indices

c = 1− 1
n
, a =

1−α
2

, b =
1−α

2
− 1

n
. (6.6.12)

Equation (6.5.4) with these indices has solutions

u0(z) = Cz1/n F(a+ 1
n ,b+

1
n ;1+ 1

n ;z), (6.6.13)

u1(z) = F(a,b;1−α;1− z), (6.6.14)

where the constant

C =
Γ ( 1

2 [1+α])Γ ( 1
2 [1+α + 2

n ])
Γ (1+ 1

n )Γ (α)

is chosen so that u0(1) = 1; see Exercise 16.

Theorem 6.6.1. Up to a rotation, the mapping function f : D → P, where P is a
regular curvilinear polygon with n vertices and angle πα is

f (z) =
u0(zn)
u1(zn)

, (6.6.15)
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where the u j are the hypergeometric functions (6.6.13), (6.6.14), with the indices
(6.6.12).

Proof: The constant C was chosen so that f and the right side of (6.6.15) agree at
z = 1. Rotation invariance of f implies that they agree at each of the points ωk,
0 ≤ k ≤ n−1. Since n≥ 3, they are identical. �

Exercises

1. Use the function 〈z0,z1,z2〉 of Exercise 1 of Chapter 2 to derive a measure of the
deviation of a holomorphic function f : C→ C from an affine map, in analogy
with the derivation of the Schwarzian derivative.

2. Complete the details in the proof of Proposition 6.2.1.
3. Suppose that f is holomorphic at ∞, with non-vanishing derivative:

f (z) = a0 +az−1 +bz−2 +O(z−3), a �= 0.

Show that { f ,z}= O(z−4).
4. Confirm that the identities (6.4.2) follow from the fact that { f ,z} = O(z−4) as

z→ ∞.
5. The case of a curvilinear polygon with n = 2 is a crescent. Note that the two

angles α must be equal. Derive the form of the associated second-order equation
when the points a1, a2 are taken to be 0, ∞.

6. The general second-order Fuchsian equation with singular points only at 0, ∞
can be shown to have the form (D− a)(D− b)u = 0, where again Du(z) =
zu′(z). Show that if a �= b, there are two independent solutions that are powers
of z.

7. Show that an equivalent form for the equation in Exercise 6 is

u′′(z)+
1−a−b

z
u′(z)+

ab
z2 u(z) = 0.

Deduce that conditions on a,b that put this equation into the form of the equa-
tion in Exercise 5 are a+b= 1, 4ab= 1−α2. Solving these equations gives two
independent solutions of the equation in Exercise 5, and thus a representation of
a map to the image of the crescent under some linear fractional transformation.

8. A more direct way to find a map to the crescent with angles α: given such a map,
by applying a linear fractional transformation we may assume that one vertex
is at 0 and the other at ∞. Then the two sides must be straight lines through the
origin that meet at an angle α . Compare this with the result in Exercise 7.

9. Several domains that appear in Chapter 17 are bounded below by a circular arc
and on the sides by vertical lines. Such a domain can be considered as a curvi-
linear triangle having a vertex at infinity with angle zero, and two equal angles
α at the finite vertices. What are the corresponding hypergeometric equations?
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10. Show that the continuation of the mapping function of a curvilinear triangle is
single-valued if and only if the angle at each vertex (separately) is π/m, where
m is a positive integer.

11. Use the rotation invariance of z2{ f ,z} and the determination of the constant a
in (6.6.6) to find the constants bk in (6.6.3).

12. Discuss the limiting case of a regular curvilinear polygon with n vertices when
α → 1.

13. Discuss the case of a regular curvilinear polygon when α → 0.
14. What are the angles for the case of a regular polygon with n vertices and straight

sides. What is the corresponding hypergeometric equation?
15. For results about the gamma and beta functions used in this exercise, see

Chapter 10. Assume here that a,b,c all have positive real part.

(a) Use the identities (b)n = Γ (b+n)/Γ (b) and Γ (a)Γ (b)/Γ (a+b) = B(a,b)
to write the coefficient of zn in (6.5.9) as

Γ (c)Γ (b− c)
Γ (b)

(a)n B(b+n,c−b).

(b) Use the integral representation of the beta function,

B(α,β ) =
∫ 1

0
sα−1(1− s)β−1 ds,

to convert the sum (6.5.9) to Euler’s integral formula

F(a,b;c;z) =
1

B(b,c−b)

∫ 1

0
sb−1(1− s)c−b−1

∞

∑
n=0

(a)n
n !

(sz)n ds

=
1

B(b,c−b)

∫ 1

0
sb−1(1− s)c−b−1(1− sz)−a ds. (6.6.16)

16. (a) Under the assumptions of Exercise 15, if also Re(c− a− b) > 0, prove
Gauss’s evaluation

F(a,b;c;1) =
Γ (c)Γ (c−a−b)
Γ (c−a)Γ (c−b)

.

(b) Formally part (a) shows that F(a,b;c;1) = ∞ if a+ b = c. Show that this
follows from (6.6.16).

17. Use the form (6.5.8) and the fact that z−αD[zα f (z)] = (D+α) f (z), to show
that the function

z1−c F(a+1− c,b+1− c;2− c;z)

is a solution of equation (6.5.5).
18. The elliptic modular function λ of Chapter 17 is the conformal map from C+ to

a curvilinear triangle with vertices 0,1,∞ and angles α = 0; λ (∞)= 0, λ (0)= 1,
λ (1) = ∞. Use the results of Section 6.5 and Exercises 16 and 17 to show that
λ is a constant multiple of the quotient
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(z)1/2F(1,1;3/2;z)
(1− z)1/2F(1,1;3/2;1− z)

.

Remarks and further reading

For more detail on the Schwarzian and its history, see Hille [64], [65]. For more
on the geometric interpretation, see Ovsienko and Tabachnikov [113], [114]. For
a fuller discussion of the mapping of a curvilinear triangle, see Ablowitz and
Fokas [2].

The Schwarzian has a connection to univalent functions. If a holomorphic func-
tion defined in C+ is univalent, then y2|{ f ,z}| ≤ 3/2. Conversely, if y2|{ f ,z}| ≤
1/2, then f is univalent. See Nehari [103].

The Schwarzian also plays a role in the approach of Bers to Teichmüller spaces;
see Bers [22] and Hubbard [68], Chapter 6.



Chapter 7
Riemann surfaces and algebraic curves

A Riemann surface can be thought as the domain of definition of a holomorphic
function f that has been continued analytically as far as such continuations can be
carried out. In general this is not a domain in the previous sense, i.e. a subset of
the plane. Rather it is a complex manifold of one (complex) dimension that projects
locally into C.

The functions most often considered in connection with their Riemann surfaces
are those associated with algebraic curves. Such a function f is defined implicitly
by an equation

P(z, f (z)) = 0, (7.0.1)

where P(z,w) is an irreducible polynomial in two variables z,w. For example, the
polynomial P(z,w) = w2− z leads to the function f (z) =

√
z.

The equation P(z,w) = 0 defines a curve in C2, or in S2, the subset C = {(z,w)}
of pairs (z,w) that satisfy the equation. As we shall see,C can be identified with the
Riemann surface of f .

After examining the process of analytic continuation, and defining Riemann sur-
faces in general, we show that the Riemann surface of an analytic function f is
compact if and only if f satisfies an equation (7.0.1), where P is an irreducible poly-
nomial. This requires some study of both the algebraic properties and the analytic
properties of a polynomial in two complex variables.

There is some overlap between this chapter and Chapters 15 and 16 on elliptic
functions, but the presentations are independent.

7.1 Analytic continuation

We start with the notion of a function element. This is a pair [ f ,D] that consists of
an open non-empty disk

Dr(z0) = {z : |z− z0|< r}, 0< r < ∞,
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0
√
1 = 1

√−1 = i

√−1 = −i √
1 = −1

Fig. 7.1 A portion of the continuation of
√
z

and a holomorphic function f defined on Dr(z0), e.g. by a convergent series

f (z) =
∞

∑
n=0

an(z− z0)n, |z− z0|< r.

A chain of function elements is a collection of function elements {[ f j,Dj]}nj=0
such that successive disks overlap and the corresponding functions agree on the
overlap:

Dj ∩Dj+1 �= /0; f j = f j+1 on Dj ∩Dj+1, j = 0,1,2, . . . ,n−1.

As an example, consider the square-root function z1/2. Starting with a point x> 0
and a branch of z1/2 holomorphic for |z− x| < x, consider a chain of overlapping
disks with radii x and centers zk on the circle {z : |z| = x}, such that the arguments
of the zk increase. Suppose that argzn = 2π . Then the domains of the first and last
function elements are the same, but the values may differ by a factor −1, see Fig-
ure 7.1.

This example illustrates an important question: Suppose that a chain of function
elements {[ f j,Dj]}nj=0 returns to its starting point; does fn = f0? A useful notion in
this connection is continuation along a curve, as introduced in Section 1.7. We say
that a function element [ f1,D1] can be continued along a curve γ if there is a chain
such that the union of the Dj contains γ . (We use the same notation γ for the map
γ : I→C, where I is some real interval, and for its image γ(I) in C.) We may always
take such a curve to be a polygonal line connecting the centers of the disks.

The monodromy theorem, Theorem 1.7.2, is the basis for the development of
these ideas. For convenience we repeat it here, in slightly different phrasing. We
begin with a consequence of the uniqueness result, Proposition 1.7.1.

Proposition 7.1.1. Any two continuations of a function element along a curve are
identical in a neighborhood of the curve.

Recall that a domain Ω ⊂ C is said to be simply connected if each closed curve
in Ω can be deformed continuously to a point (a constant curve).
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Theorem 7.1.2. (Monodromy theorem) Suppose that the domain Ω is simply con-
nected. Suppose that [ f0,D0] is a function element that can be continued along each
curve in Ω . Then f0 has a unique holomorphic extension to all of Ω .

A case where the theorem does not apply is a punctured disk:

Ω = Dr(z0)\{z0} = {z : 0< |z− z0|< r}.
Suppose that f can be continued along each curve in Ω . In particular we consider
continuation along circles centered at z0, in the positive direction. Suppose some
such continuation returns to the original function element in k circuits. Proposi-
tion 7.1.1 implies that the same is true for each such continuation. The logarithm at
z0 = 0 is an example for which there is no return.

If the return number k = 1, then z0 is an isolated singularity for f . If it is remov-
able, then [ f ,D] is a function element. If it is a pole, we may associate to it the
Laurent expansion

∞

∑
n=N

an(z− z0)n.

Suppose now that the first return is after k circuits, k > 1. Suppose that the origi-
nal function element is defined in a disk Dr/2(z0+a), where |a|= r/2. Define

g(w) = f (z0+wk), 0< |w|< a1/k.

This relation can be continued around a circle centered at w = 0. As w makes one
circuit around 0, z0+wk makes k circuits around z0. Therefore g returns to its orig-
inal value. Thus g is single-valued in a punctured disk centered at 0. If z0 is either a
pole or a removable singularity for f , then there is an expansion

f (z) = f (z0+(z− z0)) = g
(
(z− z0)1/k

)
=

∞

∑
n=N

an(z− z0)n/k. (7.1.1)

This expansion is valid for the original function element, for a particular branch of
the k-th root, and it remains valid as f is continued along circles centered at z0. The
expansion (7.1.1) is called the Puiseux expansion of f at z0. There are k distinct
branches of f over each nearby point z �= z0.

Similar considerations apply at z= ∞, if some function element can be continued
throughout a neighborhood {z : |z| > R}. This leads to the possibility of a Taylor,
Laurent, or Puiseux expansion

f (z) =
∞

∑
n=N

anz
−n/k

for some integer k ≥ 1.
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Fig. 7.2 Joining across a slit

7.2 The Riemann surface of a function

Figure 7.1 above can be considered an illustration of the portion of the Riemann
surface of the

√
z that lies above the unit disk D. For an illustration of a portion of

the Riemann surface of the logarithm; see Figure 1.2.
Visualizing an entire surface, with its topology, requires a little more thought.

The basic idea can be illustrated by returning to the square-root function. Except for
z = 0, the equation w2 = z has two solutions. The domain obtained by cutting the
plane along the negative real axis,

Ω = C\ (−∞,0],

is simply connected. We take two sheets—copies of the slit plane—and join them
across the slit in such a way that proceeding in the positive direction around the
origin takes us from either sheet to the other sheets. The resulting continuation of
f (z) =

√
z is single-valued and holomorphic on the resulting set, except at the points

z= 0 and z=∞, which belong to both sheets. If we add in these two points, the result
is topologically a sphere.

This procedure is most easily pictured by starting from two copies of the Rie-
mann sphere, opening each along the slit, and gluing together at the resulting curves;
see Figure 7.2. Thus the “complete analytic function” f (z) = z1/2 is defined on this
sphere minus the two points that correspond to z= 0 and z= ∞, while the Riemann
surface Rf is the complete sphere.

This sphere can be given the structure of a complex manifold in such a way that
f is a meromorphic function on Rf . In fact each function element [ f ,Dr(z0)] gives
us an open set with a coordinate function z− z0; on overlapping disks D the change
from one coordinate to the other on the overlap is holomorphic (in fact linear).
At z0 = 0 we take z1/2 as the coordinate. It is single-valued—one circuit around
the origin takes us from one sheet to the other. At z = ∞ we take (1/z)1/2 as a
coordinate. Again, coordinate changes on overlaps are holomorphic. Thus Rf is a
complex manifold. Defined in the obvious way, f is meromorphic, with a simple
zero at 0 and a simple pole at ∞.
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There are a number of different ways to set up the general version of this con-
struction, and terminology varies. The following construction and terminology is, in
our view, the clearest and most convenient.

A regular point is a pair |z0, f | consisting of a point z0 in the Riemann sphere S
and, if z0 �= ∞, a power series

f (z) =
∞

∑
n=0

an(z− z0)n (7.2.1)

that converges in some disk D of positive radius centered at z0. It is assumed that
not all coefficients are zero. If z0 = ∞ the series has the form

∞

∑
n=0

anz
−n

and the disk has the form {z : |z|> r}. The number z0 is said to be the base point of
the regular point.

A polar point is a pair |z0, f | consisting of a point z0 and a Laurent series

f (z) =
∞

∑
n=N

an(z− z0)n, N < 0, aN �= 0, (7.2.2)

that converges in some punctured disk D\{z0} centered at z0. For z0 = ∞ the expan-
sion is in powers (1/z)n.

An algebraic branch point is a pair |z0, f | consisting of a point z0 and a Puiseux
series

f (z) =
∞

∑
n=N

an(z− z0)n/k, aN �= 0, k > 1, (7.2.3)

such that the associated series ∑∞
n=N anw

n converges for w in some punctured disk
centered atw= 0. For z0 =∞ the terms are an(1/z)n/k. We assume that the expansion
(7.2.3) is not such that only powers of (z− z0)1/l have non-zero coefficients, for
some l < k. Then the first return of f to the same values is after k circuits. The
multiplicity of the branch point is the integer k. Consistent with this definition, we
take the multiplicity of a regular point or a polar point to be 1.

A regular point |z0, f | defines a function element [ f ,D] in the previous sense,
with D a disk centered at z0 and f the function defined by the associated series
(7.2.1). The disk D can be taken to have radius equal to the radius of convergence of
the series. Two regular points are said to be related if there is a chain of overlapping
function elements that links one to the other. This is clearly an equivalence relation.
The only modification needed in the case of polar points and branch points is to
broaden our definition of “function element” to include pairs consisting of punctured
disks and the functions defined in them by Laurent expansions (7.2.2) or Puiseux
expansions (7.2.3). We do so, and define a Riemann surface R f to consist of all the
points—regular points, polar points, and algebraic branch points—that are related
to some one regular point |z0, f |
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As in the case of the square-root function, analytic continuation can lead to sev-
eral points of Rf that have the same base point z0. In the case of regular or polar
points, each such point is said to be a branch at z0. In the case of a branch point
of Rf with base point z0 and expansion (7.2.3), each z sufficiently close to z0 is the
base point for k regular points, each of them close to the branch point in Rf .

A Riemann surface Rf can be made a complex manifold exactly as in the case
of the square-root function. Each disk Dz0 comes with a coordinate: z− z0 or 1/z
in the case of a regular or polar point, and (z− z0)1/k or z−1/k in the case of an
algebraic branch point. Two such disks are disjoint if the associated functions f
disagree on their entire overlap, and are linked if their intersection is non-empty
and the associated functions agree on the intersection. The function f is defined,
single-valued, and meromorphic on Rf .

The map |z, f | → (z, f (z)) ∈ S
2 identifies the Riemann surface Rf with the curve

defined by the equation w= f (z).

7.3 Compact Riemann surfaces

The following is the first half of a two-way connection between compact Riemann
surfaces and algebraic functions.

Theorem 7.3.1. Suppose that the Riemann surface R f is compact. Then {(z, f (z))}
is an algebraic curve: there is a polynomial P(z,w) such that P(z, f (z))≡ 0 on the
surface R f .

Proof: The poles and branch points of Rf are isolated points, so they are finite in
number. Let {z j}dj=1 be the collection of base points of the poles and branch points.
Choose another point z0 ∈C and let γ j be a family of non-intersecting simple curves
with γ j running from z0 to z j. Let Ω be the complement in S of the union of the
curves γ j. Then Ω is simply connected. Suppose f is holomorphic in some neigh-
borhood of a point w0 ∈ Ω . Let w be any other point of Ω , and let γ be a curve from
w0 to w. The set of points along γ to which f can be analytically continued from
w0 is clearly open relative to the curve. On the other hand, because of compactness
of the Riemann surface, this set is also closed. In fact if wn is a sequence of such
points, some subsequence of the sequence of branches {|wn, f |} converges. There-
fore f extends to each point of Ω . By the monodromy theorem, it is single-valued.

We have shown that, to each point of the Riemann surface whose base point w0

is in Ω , there corresponds a copy of Ω and a single-valued determination of f on
that copy. There are only finitely many such copies. In fact, choose a w0 ∈ Ω . The
points of the surface with base point w0 but different determinations of f are isolated
in Rf , so there are only finitely many points with base point w0. The number m of
such points is constant along each curve in Ω , and therefore is constant throughout
Ω . Thus Rf consists of m sheets—m copies of Ω—joined in some way across the
curves γ j.



7.3 Compact Riemann surfaces 89

Number the sheets, and for each z∈Ω let {|z, f j|}mj=1 be the corresponding points
of the Riemann surface. Consider the function

Q(z,w) =
m

∏
j=1

[w− f j(z)] =
m

∑
k=1

(−1)m−kSm−k(z)wk,

where the Sk are the elementary symmetric polynomials in the f j:

S0 = 1, S1 =
m

∑
j=1

f j, S2 = ∑
j �=k

f j fk, . . . , Sm =
m

∏
j=1

f j.

Because of their symmetry, the functions S j are single-valued at points z∈Ω . More-
over there was nothing special about the particular point z0 or the particular choice
of curves {γ j}, so the S j are single-valued holomorphic functions in the complement
of the points {z j}dj=1. Each of the points z j, j = 1,2, . . . ,d, is an isolated singularity
at which each Sk grows at most like a negative power of |z− z j|. Therefore each S j

is a rational function of z.

Let q(z) be the least common multiple of the denominators of the rational func-
tions S0, S1, . . . , Sm−1. The functions

qk(z) = (−1)m−kq(z)Sm−k(z)

are polynomials. Thus

P(z,w) = q(z)
m

∏
j=1

[w− f j(z)] =
m

∑
k=0

qk(z)wk

is a polynomial in z and w. By construction, P(z,w) vanishes whenever w= f (z) for
some point |z, f | in the Riemann surface of f . �

As we shall see below, the polynomial P in Theorem 7.3.1 is irreducible: it is
not the product of two non-constant polynomials in z,w. The goal of the next two
sections is to prove the converse: if P(z,w) is an irreducible polynomial of positive
degree in w, then the Riemann surface of the function f defined by

P(z, f (z)) = 0

is compact.

7.4 Algebraic curves: some algebra

In principle, if P(z,w) has real coefficients, we could consider the algebraic curve
P(x,y) = 0 inR2. The example x2+y2+1= 0 shows why algebraic curves are more
often studied as subsets of C2.

Here again we restrict the term “algebraic curve” to sets
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C = {(z,w) : P(z,w) = 0}, (7.4.1)

where P is irreducible. The polynomial P can be written in the form

P(z,w) = qn(z)wn+qn−1(z)wn−1+ · · ·+q0(z), n> 0. (7.4.2)

Here each qk is a polynomial, qn is not identically zero, and at least one of the qk is
not constant. These conditions guarantee that the curve C is not empty and that the
solutions (z,w) depend on z. Much more can be said, but to say it we need to start
with some purely algebraic considerations.

The ring of complex polynomials in one variable is denoted by C[z]. If p and q
are two such polynomials,

p(z) = an z
n+an−1 z

n−1+ · · ·+a0,

q(z) = bm z
m+bm−1 z

n−1+ · · ·+b0, anbm �= 0, n≥ m,

then there are polynomials c and r such that degc= n−m, and

p(z) = c(z)q(z)+ r(z), degr < degq. (7.4.3)

In fact (7.4.3) is a system of n−m+1 linear equations for the n−m+1 coefficients
of c that can be solved sequentially. At the first step we choose the leading coefficient
cn−m equal to the quotient an/bm of the leading coefficients of p and q. At the next
step we want

an−1 = cn−m−1bm+ cn−mbm−1 = cn−m−1bm+
an
bm

bm−1,

which determines cn−m−1, and so on. The coefficients of c and of r in (7.4.3) are
rational functions of the coefficients of p and q.

Lemma 7.4.1. Suppose that p and q are complex polynomials with no common fac-
tor. Then there are polynomials r and s such that

r(z) p(z)+ s(z)q(z) ≡ 1. (7.4.4)

Proof: We may assume that deg p ≥ degq. Set p1 = p, p2 = q, and carry out the
division algorithm (7.4.3) to obtain terms pk of strictly decreasing degree:

p1 = c2p2+ p3;

p2 = c3p3+ p4;

· · ·
pm−3 = cm−2pm−2+ pm−1;

pm−2 = cm−1pm−1+ pm,

where pm is constant. If pm = 0, then pm−1, which has positive degree, divides
pm−2. The preceding equation shows, then, that pm−1 divides pm−3. Continuing up
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the chain of equations, pm−1 divides both p2 = q and p1 = p, a contradiction. Thus
pm is a constant a �= 0. Starting with

a = pm−2− cm−1pm−1 = pm−2− cm−1[pm−3− cm−2pm−2]
= [1− cm−2]pm−2− cm−1pm−3,

we proceed up the previous chain of equations to reach p2 = q and p1 = p. Dividing
the resulting equation by a gives us (7.4.4). �

We have already spoken of irreducibility for polynomials in two variables. The
same concept applies in one variable: p ∈ C[z] is irreducible if it is not the product
of two non-constant elements of C[z].

Lemma 7.4.2. If an irreducible complex polynomial that belongs to C[z] divides the
product of two polynomials that belong to C[z], then it divides one (or both) of the
factors.

Proof: Suppose that p is irreducible and does not divide either of q1 or q2. Then
it has no common factors with either, so there are polynomials r j, s j such that
r j p+ s jq j = 1. Then

s1s2q1q2 = (1− r1p)(1− r2p) = r1r2p
2− (r1+ r2)p+1.

Therefore p does not divide the left side. �

We turn now to polynomials in two complex variables z,w, which we consider as
polynomials in w with coefficients from the ring C[z]:

P(z,w) = qn(z)wn+qn−1(z)wn−1+ · · ·+q0(z). (7.4.5)

If qn is not identically zero, we write degw(P) = n.

As noted earlier, a polynomial P(z,w) is said to be irreducible if it is not a prod-
uct of non-constant polynomials. If we view P as a polynomial in wwith coefficients
in the ring C[z], this means that P is irreducible over C[z]. We can also ask whether
it can be factored over the field of rational function C(z): is P= P1P2, where the Pj

are non-constant polynomials in w whose coefficients are rational functions of z? If
not, P is said to be irreducible over C(z). Clearly irreducibility over C(z) implies
irreducibility over C[z]. (A helpful analogy here concerns an ordinary polynomial
p with integer coefficients—factoring p as a product of polynomials with integer
coefficients, or as a product of polynomials with rational coefficients.) The major
result of this section is the converse: irreducibility over C[z] implies irreducibility
over C(z).

A polynomial of the form (7.4.5) is said to be primitive if the coefficients qk have
no common factor. Note that an irreducible polynomial is necessarily primitive.
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Lemma 7.4.3. Any polynomial of the form (7.4.5) is a product a(z)Q(z,w) where a
is a polynomial and Q is primitive. The factors a and Q are unique up to a constant
factor and its inverse.

Proof: Clearly a must be a greatest common divisor of the coefficients qk. This is
unique up to a constant factor. �

If the product of two polynomials is primitive, the factors must be primitive. The
converse is true as well.

Lemma 7.4.4. The product of primitive polynomials is primitive.

Proof: Suppose that P and Q are primitive, where

P = a0+a1w+a2w
2+ . . . , Q = b0+b1w+b2w

2+ . . . .

Let r(z) be an irreducible polynomial. Since P andQ are primitive, there are smallest
indices j and k such that r does not divide a j and bk. The coefficient of wj+k in PQ
is

[a0b j+k+ · · ·+a j−1bk+1]+a jbk+[a j+1bk−1+ · · ·+a j+kb0].

By assumption, r divides each sum in braces. By Lemma 7.4.2, it does not divide
a jbk. Thus there is a coefficient of PQ that is not divisible by r. This holds for each
such r, so PQ is primitive. �

Lemma 7.4.5. Suppose that P is a polynomial in w whose coefficients belong to
C(z). Then there is a rational function r ∈ C(z) such that Q = rP is a primitive
polynomial.

Proof: Let b be product of the denominators of the coefficients of P. Then bP is a
polynomial in w with coefficients in C[z], and Lemma 7.4.3 implies that bP = aQ,
with a a polynomial and Q primitive. Then Q= (b/a)P. �

Theorem 7.4.6. A polynomial P(z,w) is irreducible over C[z] if and only if it is
irreducible over C(z).

Proof: We may assume that P is primitive. Suppose P= QR, with Q and R in C(z).
Choose a,b,c,d, polynomials in z, such that (b/a)Q and (d/c)R belong to C[z] and
are primitive. Then

bdP = ac

[
b
a
Q · d

c
R

]
. (7.4.6)

By Lemma 7.4.4, the product in brackets is primitive. Since P is also primitive, it
follows from Lemma 7.4.3 that ac= λbd where λ is a non-zero constant. Therefore
(7.4.6) is equivalent to the factorization over C[z]
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P =
(

λ
b
a
Q

)(
d
c
R

)
.

Since irreducibility over C(z) implies irreducibility over C[z], the proof is complete.
�

Corollary 7.4.7. Suppose polynomials P(z,w) and Q(z,w) have no common factors
over C[z]. Then there are polynomials R(z,w), S(z,w), and r(z) such that r is not
identically zero and

R(z,w)P(z,w)+S(z,w)Q(z,w) = r(z). (7.4.7)

Proof: Assume degwP≥ degwQ and consider P1(w) = P(z,w) and P2(w) =Q(z,w)
as polynomials in w with coefficients in C[z]⊂ C(z). Apply the division algorithm,
leading to

Pm−2 = Cm−1Pm−1+Pm,

where Pm is independent of w but Pm−1 is not. If Pm ≡ 0, then Pm−1 divides Pm−2, as
polynomials with coefficients that are rational in z, and ultimately Pm−1 divides Q
and P. Adapting the proof of Theorem 7.4.6, this leads to a common factor of P and
Q over C(z). Thus Pm is a non-zero rational function of z. Working backward, there
are polynomials R1(z.w), S1(z.w) with coefficients in C(z) such that

R1P+S1Q = Pm.

Multiplying by the product of the denominators of the coefficients of R1, S1, and Pm
gives an equation (7.4.7) in polynomials. �

7.5 Algebraic curves: some analysis

Consider the function f (z) defined implicitly by the equation P(z, f (z)) = 0, where

0 = P(z,w) = qn(z)wn+qn−1(z)wn−1+ · · ·+q0(z). (7.5.1)

We assume that P is irreducible and that qn is not identically zero. Irreducibility
implies that the q j do not all vanish at any one point z. Thus P(z, ·) is always a
polynomial in w of some degree ≤ n.

The critical points of P are the zeros of the leading coefficient qn, together
with the points z for which P(z, ·) has a multiple zero w. The latter points are the
points z such that P(z, ·) and the derivative with respect to w, Q(z, ·) = Pw(z, ·), have
a common zero w. Irreducibility implies that P and Q have no common factor, so
Corollary 7.4.7 implies that these latter critical points are among the zeros of a
polynomial r(z). Therefore there are finitely many critical points.

Proposition 7.5.1. Suppose that z0 is not a critical point of P. Then there is a disk
Dr(z0) and n functions f j(z) defined and holomorphic in Dr(z0), such that
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P(z, f j(z)) = 0, if z ∈ Dr(z0);
f j(z)− fk(z′) �= 0, if j �= kandz,z′ ∈ Dr(z0). (7.5.2)

Proof: By assumption, P(z0, ·) has n distinct zeros {wj(z0)}. Choose ε > 0 small
enough that the disks Dε(wj(z0)) are disjoint. Then P(z0,w) does not vanish for w
on any of the circles Γj that bound these disks. Let Pw denote the partial derivative.
Then

1
2πi

∫

Γj

Pw(z0,w)
P(z0,w)

dw

is the number of zeros of P(z0, ·) in Dε(wj(z0)), i.e. one. For small r > 0, P(z,w)
will not vanish on any of theΓj if |z−z0|< r, so P(z,w)will continue to have exactly
one zero wj(z) enclosed by Γj. Moreover the value of this zero is

wj(z) =
1
2πi

∫

Γj

w
Pw(z,w)
P(z,w)

dw.

The integrand is holomorphic with respect to z, so f j = wj is holomorphic. �

If a function element [ f j,Dr(z0)] of Proposition 7.5.1 is continued along a curve,
the process will also provide a continuation of P(z, f j(z)), which will continue to
vanish identically. Therefore any continuation continues to satisfy P(z, f (z)) = 0.
In particular, continuation of any f j around a closed curve that avoids the critical
points leads to one of the fk.

We turn to an examination of the f j near a critical point.

Proposition 7.5.2. Suppose that z0 ∈ C is a critical point or the point at ∞, and
suppose that P(z0, ·) has a root w0 of multiplicity k. Then z0 is the base point for
regular points and algebraic branch points of R f , the sum of whose multiplicities
is k.

Proof: Choose ρ > 0 so that P(z0,w) has no zeros other than w0 in the closed disk
Dρ(z0) and also so that there are no other critical points in this disk. Then at each
point of the punctured disk Dρ \ {z0} there are k distinct f j. Continuing each f j
throughout the punctured disk leads to a partition of the set of such f j into sub-
sets, each of which is closed under analytic continuation in the punctured disk, and
thus corresponds to a distinct regular point or algebraic branch point of Rf . The
sum of the multiplicities is the number of elements of the set that is being parti-
tioned. �

We still need to consider the possibility that, at a critical point, some roots may
converge to ∞, and also to consider the behavior of roots as z→ ∞.

So long as w �= 0, the equation P(z,w) = 0 is equivalent to

0 = Q(z,v) = q0(z)vn+q1(z)vn−1+ · · ·+qn(z), v=
1
w

�= 0.
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NowQ(z0,0)= 0 if and only if qn(z0)= 0. If so, we can argue as in Proposition 7.5.2
that there are corresponding regular points or branch points with base point z0, that
are regular points or algebraic branch points for v= 1/z and thus poles or algebraic
branch points on the Riemann surface.

Finally, letN be the maximum of the degrees of the qk. Then for z �= 0, P(z,w)= 0
is equivalent to

0 = R(u,w) = rn(u)wn+ rn−1(u)wn−1+ · · ·+ r0(0), u=
1
z
,

where r j(u) = uNq j(1/u). Thus the analysis of f (1/z) for P(z, f (z)) = 0 is qualita-
tively the same as the analysis of R(u,g(u)) for u near 0. We conclude that points of
Rf with base point z= ∞ also belong to the Riemann surface Rf .

Theorem 7.5.3. The Riemann surfaces for the functions f j coincide: the func-
tions f j are branches of the analytic function that is determined by the equation
P(z, f (z)) = 0.

Proof: Consider the Riemann surface for the continuation of f = f1 in some disk
centered at a non-critical point. Each branch of f is one of the f j; we want to show
that each of the f j occurs among the continuations of f1. Suppose that exactly m of
the f j occur. Propositions 7.5.1 and 7.5.2, together with the discussion that follows
these propositions of the limits w→ ∞ and z→ ∞, show that the surface is compact.
Theorem 7.3.1 shows that there is a polynomial P1(z,w) of degree m in w such that
P1(z, f (z))≡ 0. There is an irreducible polynomial Q(z,w) of degree ≤m in w such
that Q divides P1. If m < n then P and Q have no common factors, and Corollary
7.4.7 applies: there are R(z,w), S(z,w), r(z) such that r is not identically zero and

R(z,w)P(z,w)+S(z,w)Q(z,w) ≡ r(z).

Take w = f (z). Then the left side vanishes identically, a contradiction. Therefore
m= n. �

7.6 Examples: elliptic and hyperelliptic curves

In Section 7.2 we discussed the Riemann surface of the function
√
z, the solution of

w2− z= 0. A similar approach can be used for any case in which the equation is of
second degree in w:

q2(z)w2+q1(z)w+q0(z) = 0, (7.6.1)

where the q j are polynomials and q2 is not identically zero.

Proposition 7.6.1. Equation (7.6.1) is equivalent to an equation

u2 = p(z), (7.6.2)



96 7 Riemann surfaces and algebraic curves

with u= a1(z)w+a2(z), where a1 and a2 are certain rational functions, and p is a
non-zero polynomial with simple roots.

For the proof see Exercise 5. Note that the polynomial

P(u,z) = u2− p(z)

is irreducible; see Exercise 3.

The crucial datum in (7.6.2) is the degree of p. For degree 1, the previous con-
struction generalizes easily: slit the Riemann sphere from the zero of p to the point
at ∞ and join two copies of the slit sphere, along the slit, to make, topologically, a
single sphere on which the function

√
p(z) is single-valued and meromorphic. The

same construction works for degree two as well: slit the sphere from one zero of p(z)
to the other, and join two copies across the slit. The resulting surface is topologically
a sphere; see Figure 7.2.

The same ideas carry over to the general case of (7.6.2), but the topology becomes
more interesting. Introduce disjoint slits in the sphere that join disjoint pairs of zeros
of p if p has even degree. If p has odd degree, run one slit from one root to ∞. A
little thought will show that a single-valued branch of

√
p(z) can be chosen on the

slit plane—what needs to be checked is what happens when the function is followed
along a curve that encloses a slit. Again, two copies of the slit sphere can be joined
along corresponding slits to form a single surface.

The cases deg p = 3, deg p = 4 of this construction involve two slits, and it is
easily seen that the resulting surface is a torus; see Figure 7.3. Both are referred to
as elliptic curves. The torus can be thought of as a sphere with a single hole pushed
through it.

In general the resulting surface has g holes, where g+1= (deg p+1)/2 if deg p
is odd, g+1= deg p/2 if deg p is even; g is called the genus of the curve w2 = p(z).
When g> 1, the curve is called a hyperelliptic curve. The fact that the genus is the
same for degree 2m and degree 2m−1 has an algebraic explanation; see Exercise 6.

One thing one might like to do is to find a good parametrization of a given curve
{(z,w)}: a pair of functions s1, s2 of a complex variable t such that

s2(t)2 = p(s1(t)).

Fig. 7.3 Joining across two slits
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If we impose the additional condition that s2 be the derivative s′1 and set s= s1, then
we are considering the equation s′ =

√
p(s). Equivalently

dt
ds

=
1√
p(s)

.

Then s(t) can be defined implicitly as a function of t by

t =
∫ s(t)

s(0)

dτ√
p(τ)

. (7.6.3)

When p has degree 1 we may translate and dilate z so that the equation has the form
w= z2, and the curve can be parametrized by

(z,w) =
(
t
2
,
t2

4

)
. (7.6.4)

When p has degree two, we may translate and dilate z so that the roots of p are ±1
and the equation is w2 = z2−1. The curve can be parametrized by (r,θ)

(z,w) = (sinh t,cosh t), t = reiθ . (7.6.5)

Here the parameter space, for finite values of t, is an infinite cylinder. Note that both
parametrizations (7.6.4) and (7.6.5) are of the form (7.6.3).

For the elliptic case, degrees 3 and 4, see Chapters 16 and 15, respectively.

7.7 General compact Riemann surfaces

In this section we sketch the relation between the previous results and a more general
point of view.

The general concept of a compact Riemann surface is a complex manifold of one
(complex) dimension: a connected topological space R that is covered by finitely
many open sets Ω j, for each of which there is a homeomorphism π j from Ω j intoC,
such that each π j ◦π−1

k is holomorphic where defined. A function g : R→ C is said
to be holomorphic (meromorphic) if each g ◦ π−1

j is holomorphic (meromorphic).
The only holomorphic functions defined on all of R are constant (Exercise 4). The
meromorphic functions form a field F (R). This field has been extensively studied,
as have certain spaces of differential forms. As we shall see,F (R) essentially char-
acterizes R. We assume here the non-trivial fact that if R is a (non-empty) compact
Riemann surface, then F (R) contains functions that are not constant.

Lemma 7.7.1. If g is a non-constant meromorphic function on the compact Riemann
surface R, then it takes each value the same number of times (counting multiplicity).
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Proof: Recall the proof when R is the Riemann sphere S: changing coordinates by a
linear fractional transformation, if necessary, we may assume that g is holomorphic
and non-zero at z = ∞. Integrating g′/g around a contour |z| =M that encloses all
the poles and zeros, we find that the number of poles equals the number of zeros.
Replacing g by g− a, we see that the number of times that g takes the value a is
independent of a. This argument carries over to the general situation, if we replace
the standard Cauchy integral theorem by Stokes’s theorem from differential topol-
ogy. �

By looking again at local coordinate systems, we may define what it means for
a map from one Riemann surface to another to be holomorphic. Two such surfaces
R1 and R2 are said to be biholomorphically equivalent if there is an invertible holo-
morphic map f from one to the other. (Note that f−1 is necessarily holomorphic if
f is.)

Theorem 7.7.2. A (general) compact Riemann surface R is biholomorphically equiv-
alent to the Riemann surface of the function defined by an irreducible polynomial.

Proof: By Lemma 7.7.1, a meromorphic function u :R→ S takes each valuem times,
m = m(u). Choose u so that m(u) is minimal. Let {z j}kj=1 be the (finitely many)
points in C that are the images of points that are multiple points of u. Choose an
additional point z0, and take non-overlapping curves γ j that join z0 to z j. Removing
these curves from S leaves a simply connected domain Ω , whose closure is all of S.
The analogue of Theorem 1.7.2 shows that a choice of u−1 in a small disk in Ω has a
unique extension to all of Ω . This allows us to find disjoint domains Ω̃ j, 1≤ j ≤ m

such that u : Ω̃ j → Ω j, a copy of Ω , is biholomorphic. Moreover, the closure of the
union of the Ω̃ j is all of R. Join two of the Ω j along a cut if u−1 continues from one
to the other along that cut. The result, equipped with appropriate coordinate maps,
is a surface R1 that is biholomorphic to R.

Suppose now that g is a second meromorphic function on R that takes each value
m times, and g is not a constant multiple of u. Let f (z) = g◦u−1(z), z ∈ Ω1. Contin-
uation of u−1 leads to continuation of f , and we can conclude that R is the Riemann
surface of f . It follows from this and the previous results that R is biholomorphically
equivalent to the Riemann surface Rf of an algebraic curve. �

7.8 Algebraic curves of higher genus

In this section we sketch some of the theory of compact Riemann surfaces of genus
g ≥ 2, with illustrations from genus 2. The first observation is that every compact
Riemann surface has a genus, i.e. topologically it is a sphere, a torus, or a surface
like that of a hyperelliptic curve—a sphere with two or more holes pushed through.
As shown in the previous section, each such surface R can be taken to an algebraic
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a1 a2

b1
b2

Fig. 7.4 Cross-cuts in the surface R

b1

b2

a1 a2

b1

a1 a2

b2b−1
1

a−1
1

b−1
2

a−1
2

Fig. 7.5 The surface R with cross-cuts, and the surface after cutting

curve, and therefore viewed as a collection of copies of the sphere S joined across
certain slits.

Consider, for example, the surface for

w2 = P(z),

where P has degree 6 and the roots are distinct. Three slits joining pairs of roots of
P are shown schematically in Figure 7.4. Figure 7.4 also shows two curves a1 and
a2 in the ”upper” of two sheets, and two curves b1 and b2 that cross from the upper
to the lower sheet through two of the slits.

The surface R, formed by joining across the three slits, is depicted on the left
in Figure 7.5. The curves a j, b j are also indicated. Cutting R along these curves
results in a simply connected region that is pictured schematically on the right in
Figure 7.5.

Reversing the procedure, we may connect the sides a j,b j in the right part of
Figure 7.5 to their counterparts a−1

j , b−1
j ; the resulting figure is the left part of Fig-

ure 7.5. The procedure that we have just outlined works for a general algebraic
curve. A judicious choice of cuts yields a simply connected region like that on the
right in Figure 7.5, with sides that are paired in a natural way to produce a sphere, a
torus, a surface of higher genus like Figure 7.5, or a similar surface with more holes.
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As noted in Section 7.6, and proved in the chapters on elliptic functions, elliptic
curves (genus 1) can be parametrized by meromorphic functions. As proved in Sec-
tion 9.4 (in the hyperelliptic case), this is not true for curves of genus ≥ 2. General
Riemann surfaces of genus≥ 2 can, however, be parametrized by automorphic func-
tions. This is the culmination of nearly a century of work by Abel, Jacobi, Riemann,
Klein, Poincaré, Weyl, and others. A complete account of this subject normally takes
several hundred pages. Here we outline part of the theory in the special case of a
hyperelliptic curve of genus 2. (In fact every compact Riemann surface of genus 2
is equivalent to a hyperelliptic curve; see Farkas and Kra [44], III.7.2.) We need to
invoke the notion of homotopy of curves (the possibility of continuous deformation
within a given topological space), and the notion of a homotopy group.

Suppose again that P is a polynomial of degree 6 with simple zeros, joined pair-
wise by slits, as shown schematically in Figure 7.4. (Or suppose that P has degree
5, with simple zeros and take the point at ∞ as a sixth point.) Let Ω+ be the sphere S
with these slits removed. Recall that the Riemann surface R of the curve w2 = P(z)
is obtained by analytic continuation of w along curves beginning at some point z0 in
Ω+. We view passing through one of the slits as taking us to a second copy Ω− of
the slit sphere, and crossing a slit in Ω− brings us back to Ω+.

The same kind of construction gives rise to the covering manifold R̃ of the Rie-
mann surface. Here we continue the coordinate z itself along curves starting from
z0 ∈ Ω+ as a function w̃ = z. However the continuations along curves γ1 and γ2
are considered as giving distinct values, unless γ1 and γ2 are homotopic in R. This
means, for example, that crossing one of the cuts indicated in Figure 7.4 and back
through a second cut leads not to the original manifold, but to a copy that may be
indexed by the two crossings (taking into account the order of the crossings). This
process is continued along curves that make any (finite) number of crossings, lead-
ing to a manifold with infinitely many sheets.

The resulting manifold R̃ is a covering manifold: there is a map π : R̃→Rwith the
property that for each point p ∈ R, there is a neighborhoodU of p such that π−1(U)
consists of disjoint copies of U . Moreover, the surface R̃ is simply connected. This
follows by tracking down the definition: if two curves from 0 arrive at points p1, p2
with the same projection π(p) ∈ R, then the curves are homotopic if and only if the
points p j lie on the same branch of R̃. The manifold R̃ itself has a complex structure,
induced locally by the projection map π .

The next stage of the development is to observe that, associated with this con-
struction, there is a natural group of bijective conformal transformations {A} of R̃,
with the property that π ◦A= π . Such maps are called covering transformations, or
deck transformations.

In fact, suppose that p0 is a point of R and that γ is a closed curve in R with p0
as starting point. Suppose that p̃0 belongs to π−1(p0). The curve γ lifts via π−1 to
a curve γ̃ in R̃ with starting point p̃0. The end point of γ̃ also lies in π−1(p0); we
define it to be Aγ(p̃0). This map can be extended by continuity to a neighborhood. In
fact choose a small (connected, simply connected) neighborhoodU of p0 such that
π−1(U) consists of disjoint copies ofU . For each p ∈U there is a curve homotopic



7.8 Algebraic curves of higher genus 101

to γ that has starting point p, and the resulting action takes the point in π−1(p) that
lies near p̃0 to the point in π−1(p) that lies near Aγ(p̃0). Following this argument
through a covering of R by such neighborhoods U , we extend Aγ to all of R̃. The
map Aγ depends only on the homotopy class of γ . Moreover Aγ has no fixed points
unless γ is homotopic to a constant map; see Exercise 10.

It can be shown that the map from γ to Aγ in the group Aut(R̃) of covering
transformations is an isomorphism from the homotopy group H1,p0(R) of closed
curves based at p0 to the group G = Aut(R̃). A result of all this is that R can be
identified with the quotient R̃/G, constructed by identifying two points if and only
if some Aγ carries one to the other.

We equipped R̃ with the complex structure that is given locally by using π−1

to pull back the complex structure on R. Then R̃ is a simply connected Riemann
surface. This makes possible a different description/construction of R. It is a (not
trivial) fact that each simply connected Riemann surface is conformally equivalent
to either the complex plane C, the Riemann sphere S, or the unit disk D. It is also a
fact that for surfaces of genus g ≥ 2, the covering manifold is conformally equiva-
lent to the disk. Therefore the previous discussion leads to the conclusion that each
compact Riemann surface of genus ≥ 2 can be identified with the quotient

Aut(D)/Γ ,

where Γ is a subgroup of the automorphism group of the unit diskD (which consists
of certain linear fractional transformations: Proposition 2.3.2). The non-identity ele-
ments of Γ are fixed-point free. Moreover, Γ is discrete: each element of Γ has a
neighborhood containing no other element of Γ ; see Exercise 11.

This result is known as the uniformization theorem. A consequence is that each
Riemann surface of genus g ≥ 2 can be parametrized by automorphic functions:
functions on D that are invariant under the discrete subgroup Γ ; see Exercise 12.

Remarks. The uniformization theorem is a non-constructive theorem. Starting from
an algebraic curve, there is no algorithm to determine the associated group G of
covering transformations, or the automorphic functions to parametrize the curve.
Thus the following example is somewhat exceptional.

An example in genus 2 is the Bolza curve, also called the Bolza surface. This is
the curve

w2 = P(z) = z(z2−1)(z2+1). (7.8.1)

The automorphism group Γ ⊂ Aut(D) can be taken to have generators

Ak =

[
1+

√
2 (2+

√
2)

√√
2−1 exp(ikπ/4)

(2+
√
2)

√√
2−1 exp(−ikπ/4) 1+

√
2

]
,

k = 0,1,2,3. A fundamental domain for Γ is a minimal domain with the property
that the images under Γ of its closure fill outD. The highlighted area Ω in the image
of D on the left in Figure 7.6 is such a domain. It is a curvilinear polygon, in fact a
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Fig. 7.6 Fundamental domain Ω ⊂ D

regular curvilinear octagon partitioned into curvilinear triangles with vertex angles
π/4, see Sections 6.4, 6.5, 6.6. The sides of each triangle are portions of geodesics
with respect to the hyperbolic metric inD, and the elements of Γ are isometries with
respect to this metric; see Chapter 3. Some of the images of the fundamental domain
Ω can be seen in the image of D on the right in Figure 7.6. (Successive images get
smaller very rapidly, with respect to the euclidean distance, as one approaches the
boundary of D.)

The actions of Γ can be visualized here. They are generated by

(a) rotations by π/4;
(b) rotation of order 3 around the center of any of the 16 small triangles bounded

by solid lines, or a solid line and the boundary of Ω ;

(c) reflection around any of the dotted lines (extended to the boundary of D);

(d) reflection through a side of any of the 16 small triangles.

In fact Γ consists of all products of these that contain an even number of reflec-
tions. As was the case for the octagon on the right in Figure 7.5, appropriate sides
of the octagon in Figure 7.6 may be identified under these actions. This leads to a
model of the curve like that on the left in Figure 7.5. The dimensions of Ω can be
deduced from these properties, Exercise 13.

Remarks: The reason for the nomenclature here is obscure. The equation (7.8.1)
does not occur explicitly in Bolza’s paper [26], which is devoted to equations of
degree six. The first treatment of (7.8.1) seems to be due to Burnside [29], who
determined an explicit representation of the curve using rational functions of the
Weierstrass℘ function and its derivatives. Burnside also determined the associated
Fuchsian equation; for this connection, see Sections 6.4–6.6. For more on (7.8.1),
see [28]. For uniformization of general surfaces of genus 2 see [81].
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Exercises

1. Determine the branches of the Riemann surface for sin−1 z with base point 1.
2. Determine the location and type of the singular points for the functions w= f (z)

defined implicitly by each of the following equations. Can you determine the
topological nature of the associated Riemann surface?

(a) w3−3wz+2z3 = 0.

(b) w(w2− z2)− z4 = 0.

(c) w2 = (z2−1)(z2−4).
3. Suppose that the polynomial P(z), of positive degree, has no multiple roots.

Prove that Q(z,w) = w2−P(z) is irreducible.
4. Prove that a holomorphic function f : R→ C on a (general) compact Riemann

surface is necessarily constant.
5. Suppose that r1 and r0 are rational functions. Show that the following sequence

of equations are equivalent to

w2
0 = r1(z)w0+ r0(z).

In each case, wj+1 = a j(z)wj+b j(z), where a j and b j are rational functions of
z and a j ≡ 1 if b j �= 0, while the p j, q j are polynomials in z.

(a) w2
1 = p1/q1.

(b) w2
2 = p1q1.

(c) w2
3 = p2, where p2 has only simple roots.

6. Suppose that p2 in part (c) of Exercise 5 has even degree 2m. Replace z by a
certain linear fractional transformation z′(z) and show that the equation (c) is
equivalent to w2 = p(z′), where p has degree 2m−1.

7. Discuss (7.6.3) in the case when p(s) = 1− s2 and s(0) = 0.
8. With the assumptions and notation of Theorem 7.7.2, show that a consequence

of the theorem is that g satisfies an equation

gn+ rn−1(u)gn−1+ · · ·+ r1(u)g+ r0(u) = 0, (7.8.2)

where the r j are rational functions.
9. Give a direct proof of (7.8.2).
10. Prove that a non-identity covering transformation has no fixed points.
11. Show that each element of Γ is isolated in Γ .
12. Show that the Bolza curve, in the form Aut(D)/Γ , can be parametrized by auto-

morphic functions.
13. (a) As noted above, each of the triangles with vertex at the center in Figure 7.6

can be mapped to itself by an element of Aut(D) that rotates the vertices. Use
this fact to determine the length of the straight side.

(b) Reflection over the curved side of the previous triangle maps to the smaller
triangle. Use this fact to determine the length of the dotted line.
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Remarks and further reading

We have barely touched on the general subject of compact Riemann surfaces or
general Riemann surfaces. There are many modern treatments of varying depth,
e.g. Cavalieri [31], Donaldson [36], Miranda [99], Narasimhan [102], Schlag [125].
Farkas and Kra [44], [45] is particularly comprehensive.

For an efficient treatment of covering spaces and the basics of automorphic func-
tion theory, see Siegel [127], [128], Chapters 2 and 3. The classic work is Weyl
[140].

For more on the algebraic theory, see Goldschmidt [51]. For algebraic curves
over finite fields, and applications, see Ling, Wang, and Xing [91].

The uniformization theorem was first stated by Klein and by Poincaré, and even-
tually proved by Koebe and Poincaré. Abikoff [1] has a very readable exposition of
the uniformization theorem, its history, and related issues. A modern proof, based
on quasiconformal mapping, is due to Bers [21]. For some different perspectives,
see Chapter 1 of Hubbard [68]. A full account of the history is given in Gray [53].



Chapter 8
Entire functions

An entire function, a function that is defined and holomorphic in the entire plane
C, can be analyzed in terms of its zeros and of its growth. Such an analysis has
important applications.

Consider the question of the possible zeros of a non-constant entire function f .
It can have no zeros, like ez, or a given finite collection of zeros, like a polynomial
with precisely those roots. There are only finitely many zeros in each disk DR(0),
so the number of zeros is at most countable. This is all that can be said at this level
of generality: the product theorem of Weierstrass shows that each sequence {zn}∞

n=1
in C such that |zn| → ∞ is the set of zeros of an entire function.

Conditions on the growth of f at infinity have a bearing on the possible distribu-
tion of zeros, and conversely, as shown by Jensen’s inequality and by a theorem of
Hadamard. One application of Hadamard’s theorem is to Riemann’s xi function of
Section 11.5. The xi function plays a key role in the analysis of the Riemann zeta
function and its relation to the distribution of primes; see Chapter 13.

The chapter concludes with a simple application of Hadamard’s factorization
theorem to an eigenvalue problem.

8.1 The Weierstrass product theorem

The key ingredients in the proof of the product theorem are factors of the form

E(w, p) = (1−w)exp
{
w+

w2

2
+ · · ·+ wp

p

}
.

The basic fact about such a factor is the estimate

log |E(w, p)| ≤ 2|w|p+1

p+1
if |w| ≤ 1

2
. (8.1.1)
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In fact |w|< 1 implies

log(1−w) = −
∞

∑
n=1

wn

n

= −
p

∑
n=1

wn

n
− wp+1

p+1

[
1+

(p+1)w
p+2

+
(p+1)w2

p+3
+ . . .

]
.

The term in brackets is dominated by ∑∞
0 |w|k = 1/(1− |w|), if |z| ≤ 1/2, which

confirms (8.1.1). This estimate leads to the Weierstrass product theorem.

Theorem 8.1.1. (Weierstrass) Let zn be a sequence of complex numbers such that
|zn| ≤ |zn+1| and |zn| → ∞ as n→ ∞. There is an entire function f whose zeros are
precisely the zn (counting multiplicity).

Proof: For convenience, we may assume that 0 is not among the zn. Let rn = |zn|.
The idea is to let

f (z) =
∞

∏
n=1

E

(
z
zn
, pn

)
=

∞

∏
n=1

(
1− z

zn

)
exp

{
z
zn

+ · · ·+ 1
pn

(
z
zn

)pn}
, (8.1.2)

for some choice of integers {pn}. If this choice can be made so that the product
converges uniformly on each bounded set, then f has the desired properties.

Suppose that |z| ≤ r. Then for n such that rn ≥ 2r and N > n, (8.1.1) gives
∣∣∣∣∣log

N

∏
k=n

E

(
z
zk
, pk

)∣∣∣∣∣ ≤
N

∑
k=n

2
pk+1

(
r
rk

)pk+1

.

Therefore uniform convergence follows if we choose the pk such that for each fixed
r > 0,

∞

∑
n=1

1
pn+1

(
r
rn

)pn+1

< ∞. (8.1.3)

The choice pn = n− 1 will work in all cases, since only finitely many rn are ≤ 2r.
(This choice is far from best possible—see Exercises 1 and 2.) �

Corollary 8.1.2. If f is a non-zero entire function, it has a factorization

f (z) = zd P(z)eh(z), (8.1.4)

where P is a (finite or infinite, possibly empty) product of the form (8.1.2) and h is
an entire function.

Proof: Choose d so that z−d f (z) is entire and non-zero at the origin. Let {zn} be the
zeros of this new function and let P be a polynomial, or a convergent Weierstrass
product, with these zeros. Then the function
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g(z) = z−d f (z)
P(z)

is entire and has no zeros. Therefore we may choose a branch of the logarithm
h(z) = logg(z), and this function is entire. �

8.2 Jensen’s formula

The main result of this chapter is a factorization theorem of Hadamard that gives
much more information about a certain class of entire functions.

An important step is to relate the number of zeros of an entire function to its rate
of growth. The key result is Jensen’s formula. This formula gives a relation between
the zeros of an entire function f and the growth of | f |. It relies on the mean value
property, which we repeat here. If f is holomorphic for |z| < r and continuous on
the closure, then

Re f (0) =
1
2π

∫ 2π

0
Re f (reiθ )dθ . (8.2.1)

Theorem 8.2.1. (Jensen) Suppose that f is entire, f (0) �= 0, and the zeros of f ,
repeated according to multiplicity, are {zn}∞

1 , with |z1| ≤ |z2| ≤ |z3| ≤ . . . . Then

log

( | f (0)|rn
|z1z2 · · ·zn|

)
=

1
2π

∫ 2π

0
log | f (reiθ )|dθ , |zn| ≤ r < |zn+1|. (8.2.2)

Proof: By continuity, it is enough to consider |zn|< r< |zn+1|. We know from Propo-
sition 2.3.2 that the linear fractional transformation

fk(w) =
w−wk

w̄kw−1
, wk =

zk
r

(8.2.3)

has modulus 1 for |w|= 1. Therefore gk(z) = fk(z/r) has the properties

gk(zk) = 0, |gk(0)| = |zk|
r
, |gk(z)| = 1 if |z|= r. (8.2.4)

The function g= f/(g1g2 · · ·gn) has no zeros in the disk of radius r centered at the
origin, so we may choose a branch of logg holomorphic in this disk. The real part
of logg is log |g|. Formula (8.2.2) follows from (8.2.3), (8.2.4), and (8.2.1). �

Let n(s) denote the number of |zk| ≤ s:

n(s) = sup{k : |zk| ≤ s}; n(s) = 0 if s< |z1|.
Then an equivalent form of Jensen’s formula (8.2.2) is

log | f (0)|+
∫ r

0

n(s)ds
s

=
1
2π

∫ 2π

0
log | f (reiθ |dθ ; (8.2.5)
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see Exercise 3.

A natural tool used in the analysis of entire functions is the maximum modulus
on circles

M(r) = M( f ,r) = sup
|z|=r

| f (z)|.

This is continuous and, by the maximum principle, non-decreasing. Jensen’s for-
mula gives an estimate for n(r) in terms of M.

Corollary 8.2.2. Under the hypotheses of Theorem 8.2.1, there is a constant C such
that

n(r) ≤ logM(2r)
log2

+C. (8.2.6)

Proof: The right side of formula (8.2.5) is at most logM(r). The function n is non-
decreasing, so ∫ 2r

0

n(s)ds
s

≥
∫ 2r

r

n(r)ds
s

= n(r) log2.

Using (8.2.5) with 2r in place of r, we obtain (8.2.6) with C = | log | f (0)|/ log2|.
�

The extended form of Liouville’s theorem, Theorem 1.2.8, implies that M(r) =
O(rn) as r → ∞, where n is a positive integer, if and only if f is a polynomial of
degree ≤ n. What if f is not a polynomial?

We start here with another look at the Weierstrass product (8.1.2). The optimal
case for convergence of the product is when it suffices to take a fixed pn = p, for
every n: the case when

∞

∑
n=1

1
|zn|p+1 < ∞. (8.2.7)

If this is the case, and if p is the smallest integer that gives convergence, then the
product

∞

∏
n=1

E

(
z
zn
, p

)
(8.2.8)

is said to be the canonical product for the zeros {zn}. This value of p is called the
genus.

Proposition 8.2.3. If the set of zeros {zn} satisfies (8.2.7) for some integer p ≥ 0,
then the function P defined by the product (8.2.8) satisfies the estimate

|P(z)| ≤ exp(C|z|p+1), (8.2.9)

for some constant C.

Proof: It is easy to see that |w| ≥ 1/2 implies that
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|E(w, p)| ≤ (1+ |w|)exp{p|2w|p} ≤ 3|w|exp{p|2w|p}
≤ exp

{
(p+1)|2w|p+1} ,

since 3|w| ≤ exp(3|w|)≤ exp(|2w|p+1) if 2|w| ≥ 1. Combining this with the estimate
(8.1.1) for |w| ≤ 1/2, we find that each factor of P satisfies the estimate

∣∣∣∣E
(

z
zk
, p

)∣∣∣∣ ≤ exp

(
C0

|z|p+1

|zk|p+1

)
, C0 = (p+1)2p+1.

Therefore (8.2.9) holds with C =C0 ∑k(1/|zk|p+1). �

This leads us to the concept of finite order.

8.3 Functions of finite order

An entire function f is said to be of finite order if there are constants C and ρ such
that

| f (z)| = O
(
eC|z|

ρ
)

as |z| → ∞. (8.3.1)

The order of f is the greatest lower bound of the ρ for which such an estimate holds.
For example, polynomials have order zero. If Q is a polynomial of degree n, then
eQ(z) has order n, in particular, ez has order 1. The function ee

z
does not have finite

order.

Proposition 8.2.3 says that a Weierstrass product with genus p has order at most
p+1. The following is a partial converse. It implies, in particular, that if the product
in Proposition 8.2.3 is canonical and has order ρ , then p < ρ if ρ is not an integer,
p≤ ρ +1 if ρ is an integer.

Proposition 8.3.1. Suppose the entire function f has order ρ . Let {zn} be the set of
non-null zeros of f , with |zn| ≤ |zn+1|, repeated according to multiplicity. Then for
each σ > ρ ,

∞

∑
n=1

1
|zn|σ < ∞. (8.3.2)

Proof: Wemay replace f by z−d f if necessary, and assume that f (0) �= 0. Combining
the order assumption with the estimate (8.2.6), we find that for a given ε > 0,

n(r) ≤ Cεr
ρ+ε .

Setting r = |zn| gives n≤Cε |zn|ρ+ε , or

1
|zn|ρ+ε = O

(
1
n

)
. (8.3.3)
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Given σ > ρ , choose ε so that ρ + ε < σ . Then (8.3.3) implies

1
|zn|σ = O

(
1
nτ

)
, τ =

σ
ρ + ε

> 1. �

The final tool needed for the proof of the Hadamard factorization theorem is an
estimate for intermediate values ofM(r) using the analogous supremum for the real
part.

Theorem 8.3.2. (Borel, Caratheodory) Suppose that f is holomorphic in the disk
DR(0) and continuous on the closure. Then for 0< r < R,

M(r)≤ 2r
R− r

A(R)+
R+ r
R− r

| f (0)|, A(R) = sup
|z|=R

Re f (z). (8.3.4)

Proof. We may assume that f is not constant. Suppose that f (0) = 0, so A(R)> 0.
Let

h(z) =
f (z)

2A(R)− f (z)
,

so

f (z) =
2A(R)h(z)
1+h(z)

.

Let f = u+ iv, u and v real-valued. Then

|2A(R)− f (z)|2 = |2A(R)−u(z)|2+ |v(z)|2 ≥ |u(z)|2+ |v(z)|2 = | f (z)|2,
so |h(z)| ≤ 1 for z in the disk. Since h(0) = 0, the Schwarz lemma, Lemma 2.3.3,
adapted to DR(0), implies |h(z)| ≤ |z|/R, so

| f (z)| ≤ 2A(R)r/R
1− r/R

=
2A(R)r
R− r

. (8.3.5)

If f (0) �= 0, we consider g(z) = f (z)− f (0) instead. Then (8.3.5) applied to g gives

M(r)−| f (0)| ≤ 2[A(R)+ | f (0)|]r
R− r

which is (8.3.4). �

Corollary 8.3.3. Under the hypotheses of Theorem 8.3.2,

sup
|z|=r

| f (n)(z)| ≤ n !2n+2R
(R− r)n+1 [A(R)+ | f (0)|]. (8.3.6)

Proof: Using Cauchy’s formula for the derivative, and integrating over the circle
with center z and radius (R− r)/2, we find
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| f (n)(z)| ≤ n !

(
2

R− r

)n

M

(
R+ r
2

)
. (8.3.7)

By (8.3.4), since R− 1
2 (R+ r) = 1

2 (R− r),

M

(
R+ r
2

)
≤ 2( 12 (R+ r))

1
2 (R− r)

A(R)+
R+ 1

2 (R+ r)
1
2 (R− r)

| f (0)|

≤ 4R
R− r

[A(R)+ | f (0)|]. (8.3.8)

The estimate (8.3.6) follows from (8.3.7) and (8.3.8). �

8.4 Hadamard’s factorization theorem

We are finally in a position to state and prove the factorization theorem of Hadamard
[55].

Theorem 8.4.1. Suppose that f is an entire function of finite order ρ . Then

f (z) = zdP(z)eQ(z), (8.4.1)

where P is the canonical product associated to the non-null zeros of f and Q is a
polynomial of degree n≤ ρ .

Proof: Corollary 8.1.2 and Proposition 8.3.1 imply that f has a factorization of the
form (8.4.1), and that the canonical product P has genus p < ρ + 1. It remains to
be shown that Q is a polynomial of degree ≤ n = [ρ], the greatest integer ≤ ρ . For
convenience, let us replace f by z−d f and assume that f (0) �= 0. We want to show
that the derivative Q(n+1) vanishes. The logarithmic derivative of f is

f ′(z)
f (z)

= −
∞

∑
m=1

[
1

zm− z
−q′m(z)

]
+Q′(z),

where

qm(z) =
z
zm

+
z2

2z2m
+ · · ·+ zp

pzpm
.

Now p+ 1 is at most the first integer > ρ , so p ≤ n. It follows that differentiating
the logarithmic derivative n times gives

{
f ′(z)
f (z)

}(n)

= −
∞

∑
m=1

n !
(zm− z)n+1 +Q(n+1). (8.4.2)

Now set
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gR(z) =
f (z)
f (0) ∏

|zm|≤R

(
1− z

zm

)−1

. (8.4.3)

Note that gR is entire and has no zeros with modulus≤R, and gR(0)= 1. Let hR(z)=
loggR(z), |z| ≤ R, taking the principal branch of the logarithm. Then

h(n)R (z) =
{

f ′(z)
f (z)

}(n)

+ ∑
|zm|≤R

n !
(zm− z)n+1

= Q(n+1)− ∑
|zm|>R

n !
(z− zm)n+1 . (8.4.4)

The final step is to estimate h(n+1)
R . If |z| = 2R then each (1− z/zm)−1 in the

product (8.4.3) has modulus ≤ 1, so

|gR(z)| ≤
∣∣∣∣ f (z)f (0)

∣∣∣∣ ≤ eCR
ρ+ε

.

Since gR is entire, this inequality then also holds for |z| ≤ R. Therefore

Re [hR(z)] = log |gR(z)| ≤ CRρ+ε , |z| ≤ R.

By Corollary 8.3.3, for |z|= r < R,

|h(n+1)
R (z)| ≤ 2n+3(n+1) !

(R− r)n+2 CRρ+1+ε .

In particular, for |z| ≤ 1
2R,

|h(n+1)
R (z)| ≤ 22n+5(n+1) !CRρ+ε−(n+1).

Combining this with (8.4.4) we find that for |z|< R/2,

|Q(n+1)(z)| ≤ 22n+5(n+1) !CRρ+ε−(n+1) +n !2n+1 ∑
|zm|>R

1
|zm|n+1 .

For small ε the first term on the right has limit 0 as R → ∞. The sum on the right
converges so it also has limit 0 as R → ∞ Therefore the entire function Q(n+1) is
identically 0. �

8.5 Application to Riemann’s xi function

This section depends on the discussion of the xi function
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ξ (s) =
s(1− s)

2
Γ

( s
2

)
π−s/2 ζ (s) (8.5.1)

in Chapter 11.
The original motivation for Hadamard’s study of entire functions was to prove

Riemann’s assertion that the xi function has a factorization

ξ (s) = ξ (0)∏
ρ

(
1− s

ρ

)
, (8.5.2)

where the ρ are the zeros of the entire function ξ , which are the same as the non-
trivial zeros of the Riemann zeta function ζ (s). (The “trivial zeros” of ζ are the
negative even integers.) By (11.5.5), ξ (0) = 1/2.

For this purpose, we need to estimate ξ . The symmetry ξ (s) = ξ (1− s) implies
that we may restrict attention to the half plane {s : Res ≥ 1

2}. It is easy to see that
for Res≥ 2,

|ζ (s)| ≤
∞

∑
n=1

1
nRes

≤
∞

∑
n=1

1
n2

=
π2

6
. (8.5.3)

For the range 1
2 ≤ Res< 2 we take advantage of (11.1.2): for Res> 0,

Γ (s)ζ (s) =
1

s−1
− 1

2s
+

∫ 1

0
f (x)xs−1 dx+

∫ ∞

1

xs−1

ex−1
dx, (8.5.4)

where f (x) = (ex−1)−1−1/x+1/2=O(x) as x→ 0. It follows from this identity
that ∣∣∣∣Γ (s)ζ (s)− 1

s−1

∣∣∣∣ ≤ constant,
1
2
≤ Res< 2. (8.5.5)

Now
|Γ (s)| ≥ ReΓ (s) =

∫ ∞

0
e−tRe(ts−1)dt,

which is bounded below for 1/2≤ Res≤ 2. We know that ζ has a simple pole with
residue 1 at s= 1, so (8.5.5) implies that

∣∣∣∣ζ (s)− 1
s−1

∣∣∣∣ ≤ constant,
1
2
≤ Res≤ 2. (8.5.6)

It follows from (8.5.1) and (8.5.3)–(8.5.6) that |ξ (s)| is dominated by

|s|2
[
1+Γ

( s
2

)]
, Res≥ 1

2
.

In view of the approximation (10.5.8), this implies

|ξ (s)| = O(e|s| log |s|); (8.5.7)

see Exercise 7. Thus the entire function ξ has order 1. It also follows from (8.5.1)
and (10.5.2) that, as an estimate in terms of |s|, (8.5.7) is optimal.
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The optimality of (8.5.7) and Proposition 8.2.3 implies that the sum

∑
ρ

1
|ρ | = ∞.

Thus the product (8.5.2) is not absolutely convergent. On the other hand, it follows
from Proposition 8.3.1 that

∑
ρ

1
|ρ |1+ε < ∞ for each ε > 0.

In particular, ∑ |ρ |−2 is finite.

Theorem 8.5.1. (Hadamard) The product formula

ξ (s) = ξ (0) ∏
ξ (ρ)=0

(
1− s

ρ

)
(8.5.8)

is valid, in the sense that

ξ (s)
ξ (0)

= lim
N→∞ ∏

|ρ |≤N

(
1− s

ρ

)
. (8.5.9)

Proof: Consider the canonical product for this case. We have shown that ξ has order
1, so the canonical product is

∏
ρ

(
1− s

ρ

)
es/ρ . (8.5.10)

The symmetry ξ (s) = ξ (1− s) implies that roots �= 1/2 come in pairs {ρ,1−ρ}.
Note that |1−ρ | ∼ |ρ | as |ρ | → ∞.

If we pair the corresponding two factors in (8.5.10), we obtain
(
1− s

ρ

)
es/ρ

(
1− s

1−ρ

)
es/(1−ρ) =

ρ − s
ρ

1−ρ − s
1−ρ

exp

(
s
ρ
+

s
1−ρ

)

=
(
1− s(1− s)

ρ(1−ρ)

)
exp

(
s

ρ(1−ρ)

)
.

Now 1/ρ(1−ρ) = O(|ρ |−2). It follows that, paired this way, we may separate out
the exponential terms and are left with absolutely convergent product

exp

(
∑ s

ρ(1−ρ)

)
∏

(
1− s(1− s)

ρ(1−ρ)

)
.

It follows from this and the factorization theorem that
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0 1
x

u

Fig. 8.1 Inhomogeneous string

ξ (s) = eQ(s)∏
ρ

(
1− s

ρ

)
,

where the product is interpreted in the sense above, and Q is a polynomial of degree
at most 1. Both ξ and the product are invariant under s→ (1− s), so the same must
be true of Q. Therefore Q has degree zero, and we have (8.5.8). �

8.6 Application: an inhomogeneous vibrating string

Suppose that the density of a string is described by a function m : [0,1]→ ρ+. We
assume that there are constants M0 and M1 such that

0<M0 ≤ m(x) ≤ M1 < ∞. (8.6.1)

Let u(x, t), 0≤ x ≤ 1, t ∈ R denote the height of the (center of the cross-section
of the) string above its resting position at height 0, with fixed endpoints u(0, t) =
u(1, t) = 0; see Figure 8.1. The equation of motion of the vibrating string is given
by Newton’s second law: mass times acceleration equals force. The acceleration at
time t, at the point x is utt(x, t) and the force, due to the tension, is proportional to
uxx(x, t). Therefore (with a convenient choice of units), the string equation is

m(x)utt(x, t) = uxx(x, t), (8.6.2)

where m is the mass density at x. We make no particular regularity assumptions on
m—it could be piecewise continuous, or merely measurable.

A standard trick for such equations is to separate variables. One looks for solu-
tions that have the form

u(x, t) = ϕ(x)ψ(t).

Computing (8.6.2) for this case and dividing by the product mϕψ give

ψ ′′

ψ
=

ϕ ′′

mϕ
.

By assumption, the left side is independent of x and the right side is independent of
t, so each quotient is equal to some constant λ . The resulting equation for ψ puts no
constraint on the constant λ , but the equation
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ϕ ′′(x) = λm(x)ϕ(x) (8.6.3)

with boundary conditions
ϕ(0) = ϕ(1) = 0 (8.6.4)

does constrain λ . Clearly λ = 0 corresponds to the trivial solution ϕ ≡ 0. As we
shall see, there is a sequence of solutions {ϕn} with

0 > λ1 > λ2 > λ3 > .. . , λn →−∞.

Corresponding real-valued solutions of the (8.6.2) are then

un(x, t;a) = cos(
√
|λn| t−a)ϕn(x), 0≤ a< 2π.

The first step is to make precise the meaning of the equation (8.6.3). If we assume
for the moment that ϕ has a continuous first derivative and ϕ(0) = a, ϕ ′(0) = b, then
the equation (8.6.3) can be taken to mean

ϕ(x) = a+
∫ x

0
ϕ ′(t)dt

= a+
∫ x

0

[
b+

∫ t

0
ϕ ′′(s)ds

]
dt

= a+bx+λ
∫ x

0

∫ t

0
m(s)ϕ(s)dsdt. (8.6.5)

We define a solution of (8.6.3) to be a continuous function ϕ : [0,1] → C that is a
solution of (8.6.5) for some a,b ∈ C.

Proposition 8.6.1. For each pair a,b ∈ C, there is a unique solution of the integral
equation (8.6.5).

Proof: The difference of two solutions of (8.6.5) with the same values a,b is a solu-
tion with values a= b= 0. To prove uniqueness, therefore, it is enough to show that
if ϕ is a continuous solution with a = b = 0, then ϕ ≡ 0. Let C be an upper bound
for |ϕ(x)|, 0≤ x≤ 1. Then (8.6.5) and (8.6.1) imply

|ϕ(x)| ≤ C|λM1|x
2

2
, 0≤ x≤ 1.

By induction

|ϕ(x)| ≤ C|λM1|nx2n
(2n) !

, n= 1,2,3, . . . . (8.6.6)

The right side has limit zero as n→ ∞.
Existence is proved by setting

ϕ0(x) = a+bx, ϕn+1(x) =
∫ x

0

∫ t

0
m(s)ϕn(s)dsdt.
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Formally, the sum

ϕ(x,λ ) ≡ a+bx+
∞

∑
n=1

λ nϕn(x) (8.6.7)

is a solution of (8.6.5). Convergence of the series (8.6.7) follows from the estimates

|ϕn(x)| ≤ |a| · M
n
1x

2n

(2n) !
+ |b| · M

n
1x

2n+1

(2n+1) !
; (8.6.8)

see Exercises 11 and 12 for details. �

Proposition 8.6.2. The values of λ such that the problem (8.6.3), (8.6.5) has a non-
zero solution form an infinite sequence {λn} with

0 > λ1 > λ2 > λ3 > .. . , λn →−∞, (8.6.9)

such that
∞

∑
n=0

1

|λn|1/2+ε < ∞, all ε > 0. (8.6.10)

Proof: If ϕ is a non-zero solution, then it is a solution of (8.6.5) with a = 0, b �= 0,
with the additional property that ϕ(1) = 0. It can be normalized by taking b = 1.
Moreover, an integration by parts shows that

λ
∫ 1

0
m(x)|ϕ(x)|2 dx =

∫ 1

0
ϕ ′′(x)ϕ(x)dx = −

∫ 1

0
|ϕ ′(x)|2 dx,

so λ < 0.
Let Φ(x,λ ) be the solution of (8.6.5) with a = 0, b = 1. Then the normalized

solutions of (8.6.3) and (8.6.4) are precisely the Φ(x,λ ) for which Φ(1,λ ) = 0.
According to the estimates (8.6.6) and (8.6.8),

|Φ(1,λ )| ≤ sinh(|λM1|1/2)
|λM1|1/2

= O(e|λM1|1/2).

Thus Φ(1,λ ) is an entire function of λ of order at most 1/2. On the other hand, it
is easily established that for λ > 0, the summands ϕn in (8.6.7) satisfy

ϕn(x) ≥ Mn
0 x

2n+1

(2n+1) !
. (8.6.11)

It follows that for λ > 0,

Φ(1,λ ) ≥ sinh(λM0)1/2)
(λM0)1/2

. (8.6.12)

Therefore Φ(1,λ ) is precisely of order 1/2.
Note that Φ(1,0) = 1. By Theorem 8.4.1,
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Φ(1,λ ) =
∞

∏
n=1

(
1− λ

λn

)
.

But Φ(1,λ ) is not a polynomial, so the number of zeros {λn} is infinite. Our argu-
ment so far shows that the zeros are negative. The uniqueness argument shows that
an eigenfunction ϕν is determined uniquely by ϕ ′

ν(0), so any other eigenfunction for
λν is a constant multiple of ϕν . Thus the eigenvalues are simple. This establishes
(8.6.9).

The estimate (8.6.10) follows from Proposition 8.3.1. �

Proposition 8.6.2 can be improved with some input from differential equations
technique. Note that in the constant density case m(x)≡ m the solutions are

ϕn(x) = sin(|λn|1/2πx), λn = − (nπ)2

m
. (8.6.13)

This suggests the following.

Proposition 8.6.3. The values λn of (8.6.9) satisfy the estimates

− (nπ)2

M0
≤ λn ≤ − (nπ)2

M1
. (8.6.14)

For the proof, see Exercise 13.

Exercises

1. Show that any choice of pn such that pn/ logn ≥ a > 0 is sufficient to force
convergence of the product in (8.1.2).

2. Show that the choice of pn in Exercise 1 is best possible, in the sense that if
pn/ logn→ 0 as n→ ∞, then there is a sequence {zn}, such that {|zn|} is non-
decreasing, |zn| → ∞, but the product in (8.1.2) does not converge.

3. Use Proposition 1.8.1 to prove (8.2.5).
4. Suppose that f is a polynomial of degree n and f (0) �= 0. Show that Theorem

8.2.1 implies that f has exactly n zeros, repeated according to multiplicity. (Use
the asymptotics of f (z) as z→ ∞.)

5. Prove that an entire function of fractional order attains every finite value
infinitely many times.

6. (a) Apply Hadamard’s theorem to sinz.

(b) Apply Hadamard’s theorem to cosz.
7. Prove that the estimate (10.5.8) implies (8.5.7).
8. Prove that the zeros of ξ satisfy

∑ 1
ρ logρ

< ∞.
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9. (a) Show that the order of

f (z) =
∞

∑
n=0

zn

(n !)α , α > 0

is at least 1/α . (Estimate, for fixed r, the maximum value of rn/(n !)α .)

(b) Show that the order is ≤ 1/α . Use the estimate

f (r) <
∞

∑
n=N

zn

(n !)α +
∞

∑
n=N+1

zn

[(N+1) !Nn−N−1]α

< Crn+
rN+1

[(N+1) !]α(1− r/Nα)
, Nα > r.

10. Show that f (z) =
∫ ∞
0 e−t2 coszt dt has order 2.

11. Prove the estimates (8.6.6), (8.6.8), and (8.6.11).
12. Verify that the series (8.6.7) is a solution of (8.6.5).
13. Suppose that ϕ1 and ϕ2 are non-zero solutions of two versions of (8.6.3):

ϕ ′′
1 = −μ1ϕ1, ϕ ′′

2 = −μ2ϕ2,

and suppose μ2(x)> μ1(x)> 0 for 0≤ x≤ 1.

(a) Show that the Wronskian W = ϕ1ϕ ′
2−ϕ ′

1ϕ2 is either identically zero or is
never zero. (Hint: look atW ′.)
(b) Suppose that ϕ1(a) = ϕ1(b) = 0 for some points a,b∈ [0,1], a< b. Suppose
also that W �= 0. Show that if ϕ1 has no zeros between a and b, then ϕ2 has a
zero between a and b. (Hint: ϕ ′(b) �= 0.) (This is a case of the Sturm Comparison
Theorem.)

(c) Show that in the case of (8.6.3), λn is the value of λ for which Φ(x,λ ) has
exactly n zeros in (0,1], one of them at x= 1.

(d) Prove Proposition 8.6.3.

Remarks and further reading

Entire functions are often considered in the context of entire meromorphic functions—
see Chapter 9 and the references there. See also Boas [24] and Levin [88], [89].



Chapter 9
Value distribution theory

The first general result about values of a complex function is due to Gauss: a com-
plex polynomial of degree n takes every complex value exactly n times, counting
multiplicity. Early in the development of complex function theory it was known that
each rational function, as a function on the Riemann sphere, takes every value (finite
or infinite) the same number of times. A theorem of Picard says that a non-constant
entire meromorphic function, i.e. a function meromorphic on all of C, can omit at
most two values. A related theorem says that such a function can have at most four
values at which all the solutions are multiple—a result that severely limits the curves
that can be parametrized by meromorphic functions.

In the 1920s Nevanlinna undertook a deep study of the distribution of values
of entire meromorphic functions. Each of the results mentioned above, as well as
a stronger version of Picard’s theorem, can be proved using Nevanlinna’s theory.
This theory also leads to versions for entire meromorphic functions of Hadamard’s
theory of entire functions; see Chapter 8.

In this chapter we introduce the “Nevanlinna characteristic” of an entire mero-
morphic function, and a closely related version due (separately) to Ahlfors and to
Shimizu. The first and second “fundamental theorems” are proved, and are then
applied to obtain the results mentioned above. This is only a brief introduction to a
large body of work, much of it of current interest; see the remarks at the end of the
chapter.

9.1 The Nevanlinna characteristic and the first fundamental
theorem

Throughout this section, f denotes a non-constant entire meromorphic function. The
integral

1
2π

∫ 2π

0
log | f (reiθ )|dθ (9.1.1)
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plays a central role. To analyze it we start by noting that the integrand is the real
part of

log f (reiθ ) = log | f (reiθ )|+ iarg f (reiθ ) = U(x,y)+ iV (x,y).

Since

r
∂
∂ r

= x
∂
∂x

+ y
∂
∂y

,
∂

∂θ
= −y

∂
∂x

+ x
∂
∂y

,

the Cauchy–Riemann equations imply that

r
∂U
∂ r

= xUx+ yUy = xVy− yVx =
∂V
∂θ

.

Therefore, assuming that f has no zeros or poles on the circle {z : |z|= r},

r
d
dr

{
1
2π

∫ 2π

0
log | f (reiθ )|dθ

}
=

1
2π

∫ 2π

0

∂
∂θ

{
arg f (reiθ )

}
dθ . (9.1.2)

The integral on the right is the number of zeros of f in the disk {z : |z| < r} minus
the number of poles in the disk; see Exercise 1. In general, set

n(r,a, f ) = number of solutions of f (z) = a, |z| ≤ r, (9.1.3)

counting multiplicity. Assume that f (0) �= 0,∞ and that f (z) �= 0,∞ when |z| = r.
Then we have

1
2π

∫ 2π

0
log | f (reiθ )|dθ = log | f (0)|+N(r,0, f )−N(r,∞, f ), (9.1.4)

where

N(r,0, f ) =
∫ r

0

n(s,0, f )
s

ds, N(r,∞, f ) =
∫ r

0

n(s,∞, f )
s

ds. (9.1.5)

Let us push this one step further by allowing for a zero or pole at z = 0. In each
case f has a Laurent expansion at z= 0,

f (z) = czp+ ∑
n>p

cnz
n = zpg(z).

We can apply the preceding argument to the entire meromorphic function g, leading
to

1
2π

∫ 2π

0
log | f (reiθ )|dθ = p logr+

1
2π

∫ 2π

0
log |g(reiθ )|dθ

= p logr+ log |c|+N(r,0,g)−N(r,∞,g). (9.1.6)

Note that if p ≥ 0 then n(r,0,g) = n(r,0, f )− p, while if p < 0, n(r,∞,g) =
n(r,∞, f )+ p. Thus in either case (9.1.6) is just (9.1.4) with f (0) replaced by the
leading coefficient in the Laurent expansion and (9.1.5) replaced by
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N(r,a, f ) =
∫ r

0

n(s,a, f )−n(0,a, f )
s

ds+n(0,a, f ) logr. (9.1.7)

At this point Nevanlinna’s idea was to regroup the positive and negative terms.
For positive x let

log+ x = max{logx,0}, log−(x) = max{− logx,0} = log+(1/x).

Then logx= log+ x− log+(1/x). Let

m(r,a, f ) =
1
2π

∫ 2π

0
log+

1
| f (reiθ )−a| dθ = m(r,0, f −a) (9.1.8)

and

m(r,∞, f ) =
1
2π

∫ 2π

0
log+ | f (reiθ )|dθ . (9.1.9)

Then (9.1.6) can be rewritten in the form

log |c|+m(r,0, f )+N(r,0, f ) = m(r,∞, f )+N(r,∞, f ). (9.1.10)

The term m(r,0, f ) is a measure of how often | f (reiθ )|< 1, i.e. how often, on aver-
age, f (reiθ ) is close to zero. The term m(r,∞, f ) is a measure of how often, on
average, f (reiθ ) is close to ∞.

Clearly for each a ∈ C,

n(r,a, f ) = n(r,0, f −a), n(r,∞, f ) = n(r,∞, f −a).

Therefore (9.1.10) can be put in a more general form.

Proposition 9.1.1. Suppose that f is an entire meromorphic function, and that c(a)
is the leading coefficient of the Laurent expansion of f (z)−a at z= 0. Then

log |c(a)|+T (r,a, f ) = T (r, f −a), (9.1.11)

where
T (r,a, f ) = m(r,a, f )+N(r,a, f ),
T (r, f ) = m(r,∞, f )+N(r,∞, f ). (9.1.12)

The function T (r,a, f ) is the Nevanlinna characteristic of f . Nevanlinna’s “first
fundamental theorem” says that T (r,a, f )−T (r, f ) is a bounded function of r. This
will be proved in the next section.

For applications, it can be useful to pass to an equivalent formulation of
(9.1.7) by integrating by parts and representing N(r,a, f ) as a Stieltjes integral (see
Section 1.8):
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N(r,a, f ) =
∫ r

0

n(s,a, f )−n(0,a, f )
s

ds+n(0,a, f ) logr

= [n(r,a, f )−n(0,a, f )] logr−
∫ r

0
logsdn(s,a, f )+n(0,a, f ) logr

= n(r,a, f ) logr− ∑
r j<r

logr j. (9.1.13)

Here r j = |z j| and the z j are the solutions of f (z j) = a, repeated according to mul-
tiplicity and numbered with |z j| ≤ |z j+1|.

The asymptotics of T (r,a, f ) as r→ ∞ are important.

Proposition 9.1.2. Suppose that f is a non-constant rational function, f = P/Q
where P and Q are polynomials with no common zeros. Then for each a ∈ S,

lim
r→∞

T (r,a, f )
logr

= max{degP,degQ}. (9.1.14)

This follows easily from the definition of T , and (9.1.13); see Exercise 6.

Proposition 9.1.3. The limit

lim
r→∞

T (r, f )
logr

(9.1.15)

is finite if and only if f is rational.

Proof: The necessity of the condition follows from Proposition 9.1.2. If the limit
(9.1.15) is finite, then each N(r,∞, f ) is finite: f has only finitely many poles. There-
fore z = ∞ is an isolated singularity of f . Suppose that f is not rational. Then ∞ is
an essential singularity. By the Casorati–Weierstrass theorem, the image of each set
Ωn = {z : n < |z| < ∞} is dense in C. It follows that we may choose a decreas-
ing sequence of closed disks An ⊂ f (Ωn). The centers of these disks converge to a
finite point a that belongs to each An. Then N(r,a, f )/ logr has limit ∞, so the limit
(9.1.15) is also infinite. �

It follows from (9.1.13) that an equivalent form of (9.1.11) is

log |c(a)|+m(r,a, f )+n(r,a, f ) logr− ∑
r j<r

logr j

= m(r,∞, f −a)+n(r,∞, f ) logr− ∑
s j<r

logs j, (9.1.16)

where s j = |wj| and the wj are the poles of f , repeated according to multiplicity.
Note that

−m(r,a, f )+m(r,∞, f −a) =
1
2π

∫ 2π

0
log | f (reiθ )−a|dθ .
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Therefore when a= 0, f (0) �= 0 and f has no poles in the closed disk {z : |z| ≤ r},
(9.1.16) reduces to

log | f (0)|+n(r,0, f ) logr− ∑
r j≤r

logr j =
1
2π

∫ 2π

0
log | f (reiθ )|dθ ,

which is Jensen’s theorem, Theorem 8.2.1. Thus (9.1.16) is simply Jensen’s theorem
generalized to the situation when f is meromorphic and f − a may have a zero or
pole at z= 0.

The first several results mentioned in the introduction can be deduced from
(9.1.16); see the exercises.

9.2 The first fundamental theorem and a modified characteristic

Nevanlinna [105] proved two “fundamental theorems” about the characteristic T
that have striking applications to the study of the values of meromorphic functions.
In this section we prove the first fundamental theorem, as well as a more elegant
form that uses a modified version of the characteristic.

Theorem 9.2.1. (First fundamental theorem) The difference |T (r,a, f )−T (r, f )| is
a bounded function of r:

|T (r,a, f )−T (r, f )| ≤ | log |c(a)| |+ log+ |a|+ log2. (9.2.1)

Proof: It follows from (9.1.11) that

T (r,a, f )−T (r, f ) = − log |c(a)|+ |m(r,∞, f −a)−m(r,∞, f )|
= − log |c(a)|+ 1

2π

∫ 2π

0

[
log+ | f (reiθ )−a|− log+ | f (reiθ )|

]
dθ . (9.2.2)

Now for x,y≥ 0,
log+(x+ y) ≤ log+ x+ log+ y+ log2;

this is a special case of Exercise 7. Moreover log+ x is non-decreasing for x ≥ 0.
Therefore

log+ | f (z)−a| ≤ log+(| f (z)|+ |a|) ≤ log+ | f (z)|+ log+ |a|+ log2.

The same argument, with f and f − a interchanged, shows that the integrand in
(9.2.2) is dominated by log+ |a|+ log2. Integrating gives (9.2.1). �

Corollary 9.2.2. For every a ∈ S,

lim
r→∞

T (r,a, f )
logr

≥ 1.
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Proof: This follows easily from Theorem 9.2.1 and Proposition 9.1.2 for rational f ,
or Proposition 9.1.3 for irrational f . �

It will be convenient to work with a modified version of the characteristic, due to
Ahlfors and to Shimizu. This version takes advantage of the distance function that
is obtained by identifying the plane with the unit sphere (minus the north pole) via
the inverse of the stereographic projection; see Section 2.1:

d(z,w) =
|z−w|√

(1+ |z|2)(1+ |w|2) . (9.2.3)

In particular

d(z,0) =
|z|√
1+ |z|2 , d(z,∞) =

1√
1+ |z|2 . (9.2.4)

To obtain a spherical version of the function m, defined by (9.1.8), we replace
| f (reiθ )− a| by the spherical distance (9.2.3) and replace the cutoff for | f (reiθ )−
a|< 1 by a comparison of the distance d( f (reiθ ),a) to the distance d( f (0),a):

m◦(r,a, f ) =
1
2π

∫ 2π

0
log

d( f (0),a)
d( f (reiθ ),a)

dθ , if f (0) �= a. (9.2.5)

Then
lim
r→0

m◦(r,a, f ) = 0 if f (0) �= a. (9.2.6)

Modifications are needed to cover the cases f (0) = a ∈ C and f (0) = ∞. First,

m◦(r,a, f ) =
1
2π

∫ 2π

0
log

|c|
(1+ |a|2)d( f (reiθ ),a) dθ , if f (0) = a ∈ C, (9.2.7)

where c is the leading coefficient in the Taylor expansion of f (z)−a at z= 0.
Second,

m◦(r,∞, f ) =
1
2π

∫ 2π

0
log

√
1+ | f (reiθ )|2

|c| dθ , if f (0) = ∞, (9.2.8)

where c is the leading coefficient in the Laurent expansion of f at z= 0.
The corresponding modification of the Nevanlinna characteristic is the Ahlfors–

Shimizu characteristic

T ◦(r,a, f ) = m◦(r,a, f )+N(r,a, f ), (9.2.9)

where N(r,a, f ) is defined, as before, by (9.1.7). For T ◦ the first fundamental theo-
rem takes an elegant form.

Theorem 9.2.3. The Ahlfors–Shimizu characteristic T ◦(r,a, f ) is independent of
a ∈ S= C∪{∞}.
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Proof: Suppose first that a �= b and f (0) �= a,b. Then

m◦(r,a, f )−m◦(r,b, f ) =
1
2π

∫ 2π

0
log

[
d( f (0),a) | f (reiθ )−b|
d( f (0),b) | f (reiθ )−a|

√
1+a2√
1+b2

]
dθ .

As in the computation leading to (9.1.2) and (9.1.4),

r
d
dr

{m◦(r,a, f )−m◦(r,b, f )} =
1
2π

∫ 2π

0

∂
∂θ

{
arg

f (reiθ )−b
f (reiθ )−a

}
dθ

= n(r,b, f )−n(r,a, f ).

In view of (9.2.6), dividing by r and integrating give

m◦(r,a, f )−m◦(r,b, f ) = N(r,b, f )−N(r,a, f ),

so
T ◦(r,a, f ) = T ◦(r,b, f ).

The remaining cases f (0) = a ∈ C or f (0) = a = ∞ are handled in the same way,
using the modifications (9.2.7) or (9.2.8), respectively. �

In view of Theorem 9.2.3, we may write simply T ◦(r, f ) for the modified char-
acteristic.

Theorem 9.2.4. The Nevanlinna characteristic T (r,a, f ) and the Ahlfors–Shimizu
characteristic T ◦(r, f ) differ by a bounded function of r.

Proof: Note that

m(r,a, f ) = m

(
r,∞,

1
f −a

)
, m◦(r,a, f ) = m◦

(
r,∞,

1
f −a

)
.

The first of these identities follows immediately from the definitions, and the second
follows from the fact that

d(a,0) = d

(
1
a
,∞

)
.

Therefore it is enough to examine m◦(r,∞, f )−m(r,∞, f ). Now

d( f (0),∞)
d( f (reiθ ),∞)

=

√
1+ | f (reiθ )|2√
1+ | f (0)|2 .

Let us split the interval I = (0,2π) into the part I− where | f (reiθ )| ≤ 1 and its
complement I+. On I−, log+ | f (reiθ )|= 0 and

log
1+ | f (reiθ )|2√

1+ | f (0)|2 ≤ log2− log
√

1+ | f (0)|2.
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On I+,
√
1+ | f (reiθ )|2 ≤ 2| f (reiθ )|, so

log+
| f (reiθ )|√
1+ | f (0)|2 ≤ log

√
1+ | f (reiθ )|2√
1+ | f (0)|2

≤ log+ | f (reiθ )|+ log2− log
√

1+ | f (0)|2.

Therefore

|m◦(r,∞, f )−m(r,∞, f )| ≤
∣∣∣∣log2− log

√
1+ | f (0)|2

∣∣∣∣ . � (9.2.10)

Later we shall use an important consequence of the inequality (9.2.10). Although
m◦(r,a, f ) may be negative, it follows from Theorem 9.2.4, and the fact that
m(r,a, f ) is non-negative by definition, that

m◦(r,a, f )+O(1) ≥ 0 as r→ ∞. (9.2.11)

Theorem 9.2.4 allows us to carry Corollary 9.2.2 over to the modified character-
istic:

lim
r→∞

T ◦(r, f )
logr

≥ 1. (9.2.12)

9.3 The second fundamental theorem

The second fundamental theorem provides an estimate for the sum of several inte-
gral terms m(r,a j, f ) in terms of the single characteristic T (r, f ). This leads to deep
results, such as Picard’s theorem. Several proofs are known of Nevanlinna’s original
formulation. They have been described as either elementary, but far from simple, or
simple, but far from elementary. Here we present the proof due to Ahlfors [4] for
the Ahlfors–Shimizu characteristic T ◦(r, f ), which lies between these extremes.

Proposition 9.3.1. Suppose that f is a non-constant entire meromorphic function.
Then T ◦ is strictly increasing with r and

liminf
r→∞

T ◦(r, f )
logr

≥ 1. (9.3.1)

Proof: Let us average (9.2.9) with respect to the planar measure dm that corresponds
to surface measure on the sphere under stereographic projection (see Exercise 8) of
Chapter 2:

dm(z) =
dxdy

(1+ |z|2)2 .
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Averaging any function of d(z,a) with respect to a ∈ C gives a result that is inde-
pendent of z, so ∫

C

m◦(r,a, f )dm(a) = 0.

Therefore

T ◦(r, f ) =
1
π

∫
C

N(r,a, f )dm(a) ≥ 0. (9.3.2)

For non-constant f , the average of n(r,a, f ) with respect to a is clearly strictly
increasing with r, so the same is true of the average of N(r,a, f ).

Let a0 = f (0). Since f is not constant, there is a δ > 0 such that f takes on every
value a such that |a− a0| < δ . Therefore n(r0,a, f ) is eventually positive for such
a, and for r > r0,

N(r,a, f ) ≥
∫ r

r0

n(s,a, f )
s

ds ≥ logr− logr0. (9.3.3)

Averaging and taking the limit give the inequality (9.3.1). �

Differentiating (9.3.2) gives

r
d
dr

[T ◦(r, f )] =
1
π

∫
C

n(r,a, f )dm(a).

This integral has the following interpretation. The set {a : n(r,a, f ) = k} is a portion
of the image under f of the closed disk {z : |z| ≤ r}. Multiply the integral over this
portion of the disk by k and sum over k to see that the integral represents the total
area A(r, f ) of the image of the disk, f ({z : |z| ≤ r}). Therefore

T ◦(r, f ) =
∫ r

0

A(s, f )
s

ds, (9.3.4)

with

A(r, f ) =
∫
|a|≤r

| f ′(a)|2
[1+ | f (a)|2]2 dm(a). (9.3.5)

Note that the integrand remains bounded at the poles of f and, in fact, is continuous.

We shall want to take averages with respect to a non-negative weight function ρ
of total weight 1: ∫

C

ρ(a)dm(a) = 1.

We shall assume that ρ is chosen to be positive and continuous, except at isolated
singularities, at which it is integrable.

Averaging T ◦(r, f ) with respect to ρ ,

T ◦(r, f ) =
∫
C

T ◦(r, f )ρ(a)dm(a) = mρ(r, f )+Nρ(r, f )+ c(a, f ), (9.3.6)
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where
Nρ(r, f ) =

∫
C

N(r,a, f )ρ(a)dm(a) (9.3.7)

and

mρ(r, f ) =
∫
C

{
1
2π

∫ 2π

0
log

1
d( f (reiθ ),a)

dθ
}

ρ(a)dm(a)

=
∫
C

m◦(r,a, f )ρ(a)dm(a)− c(a, f ), (9.3.8)

where
c(a, f ) =

∫
C

log[d( f (0),a)]ρ(a)dm(a)

(since f (0) is the leading coefficient in the Laurent expansion of f (z)− a at zero,
with the exception of one value of a).

Note that, given w, the (normalized) chord length d(w,a) is less than 1 except for
one value of a, so

mρ(r, f ) > 0. (9.3.9)

Let

nρ(r, f ) = r
d
dr

[Nρ(r, f )] =
∫
C

n(r,a, f )ρ(a)dm(a).

The integral here is the integral of f over the image f ({z : |z| ≤ r|}) as described
above, so

nρ(r, f ) =
∫
|a|<r

| f ′(a)|2
[1+ | f (a)|2]2 ρ( f (a))dm(a) =

∫ r

0
λ (s, f )sds,

where

λ (r, f ) =
∫ 2π

0

| f ′(reiθ )|2
[1+ | f (reiθ )|2]2 ρ( f (reiθ ))dθ . (9.3.10)

Because of the assumptions on ρ and the remark after (9.3.5), λ (r, f ) is continuous
and is positive for r > 0. For any choice of 0< r0 < r,

Nρ(r, f )−Nρ(r0, f ) =
∫ r

r0

{∫ s

0
λ (t, f )t dt

}
ds
s
. (9.3.11)

Taking into account (9.3.6), Proposition 9.3.1, and (9.3.9), we have

T ◦(r, f ) ≥ T ◦(r, f )−T ◦(r0, f ) = mρ(r, f )−mρ(r0, f )+Nρ(r, f )−Nρ(r0, f )

>
∫ r

r0

{∫ s

0
λ (t, f )t dt

}
ds
s
−mρ(r0, f ). (9.3.12)

The next step in the analysis is to examine λ (r, f )more closely. The following well-
known inequality will be used twice. (This is a special case of Jensen’s inequality
[73]; see Exercise 16.)
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Lemma 9.3.2. If f is non-negative and integrable on the interval [a,b], then

log

{
1

b−a

∫ b

a
f (x)dx

}
≥ 1

b−a

∫ b

a
log f (x)dx. (9.3.13)

Applying Lemma 9.3.2 to λ (r, f )/2π in (9.3.10) gives

logλ (r, f )− log2π ≥ 1
2π

∫ 2π

0
logρ( f (reiθ ))dθ

+
1
2π

∫ 2π

0
log

| f ′(reiθ )|2
[1+ | f (reiθ )|2]2 dθ . (9.3.14)

Let

μ(r, f ) =
1
2π

∫ 2π

0
log

| f ′(reiθ )|
1+ | f (reiθ )|2 dθ ,

so that (9.3.14) is

logλ (r, f ) ≥ 1
2π

∫ 2π

0
logρ( f (reiθ ))dθ +2μ(r, f )+ log2π. (9.3.15)

Now

μ(r, f ) =
1
2π

∫ 2π

0
log | f ′(reiθ )|dθ +

1
2π

∫ 2π

0
log

1
1+ | f (reiθ )|2 dθ . (9.3.16)

Applying the argument used in the proof of (9.1.2),

r
d
dr

{
1
2π

∫ 2π

0
log | f ′(reiθ )|dθ

}
= n(r,0, f ′)−n(r,∞, f ′). (9.3.17)

The integrand of the second term on the right in (9.3.16) is

2 log
[1+ | f (0)|2]1/2

[1+ | f (reiθ )|2]1/2 −2log
1

[1+ | f (0)|2]1/2

= −2log
d( f (0),∞)

d( f (reiθ ),∞)
−2log

1

[1+ | f (0)|2]1/2 .

Therefore

d
dr

[μ(r, f )] =
1
r

[
n(r,0, f ′)−n(r,∞, f ′)

]−2
d
dr

[m◦(r,∞, f )]

=
1
r

[
n(r,0, f ′)−n(r,∞, f ′)

]−2
d
dr

[T ◦(r, f )−N(r,∞, f )]

=
1
r

[
n(r,0, f ′)−n(r,∞, f ′)+2n(r,∞, f )

]−2
d
dr

[T ◦(r, f )]. (9.3.18)
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Let us examine

n1(r, f ) ≡ n(r,0, f ′)−n(r,∞, f ′)+2n(r,∞, f ). (9.3.19)

The first summand is a sum over the multiple zeros a of f , |a| < r, and assigns
k− 1 to each zero of multiplicity k. The second summand is a sum over poles a of
f , |a| < r, that assigns −(k+ 1) to each pole of multiplicity k. The last summand
assigns 2k to each such pole. Therefore the counting function n1 assigns k− 1 to
each zero or pole a, |a|< r, having multiplicity k.

Integrating (9.3.18), we obtain (up to an additive constant)

μ(r, f ) = N1(r, f )−2T ◦(r, f ), (9.3.20)

where
N1(r, f ) = N(r,0, f ′)−N(r,∞, f ′)+2N(r,∞, f ).

Combining (9.3.15) and (9.3.20), we obtain

1
2π

∫ 2π

0
logρ( f (reiθ ))dθ

≤ 4T ◦(r, f )−2N1(r, f )+ logλ (r, f )− log2π. (9.3.21)

The proof of the second fundamental theorem involves taking advantage of the
inequality (9.3.21) by making a careful choice of the density function ρ . Given
distinct points a1,a2, . . . ,aq in S, let

logρ(a) = 2
q

∑
j=1

log
1

d(a,a j)
−2log

{
q

∑
j=1

log
1

d(a,a j)

}
−2C, (9.3.22)

where C is chosen so that
∫
C

ρ(a)dm(a) = 1. Note that ρ is integrable at the singu-
larities a j: as t = d(a,a j)→ 0,

ρ(a) ∼ 1
t2(log t)2

,

which is integrable. In fact using polar coordinates centered at a j, this comes down
to integrability in one variable of 1/r(logr)2 at r = 0. But this is the derivative of
−1/ logr.

With this choice of ρ , making use again of Lemma 9.3.2,

1
2π

∫ 2π

0
logρ( f (reiθ ))dθ

= 2
q

∑
j=1

1
2π

∫ 2π

0
log

1
d( f (reiθ ),a j)

dθ

−2
1
2π

∫ 2π

0
log

q

∑
j=1

log
1

d( f (reiθ ),a j)
dθ −2C
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= 2
q

∑
j=1

m◦(r,a j, f )−2
1
2π

∫ 2π

0
log

q

∑
j=1

log
1

d( f (reiθ ),a j)
dθ −2C1

≥ 2
q

∑
j=1

m◦(r,a j, f )−2log

{
q

∑
j=1

1
2π

∫ 2π

0
log

1
d( f (reiθ ),a j)

dθ

}
−2C1

= 2
q

∑
j=1

m◦(r,a j, f )−2log

{
q

∑
j=1

m◦(r,a j, f )

}
−2C2

≥ 2
q

∑
j=1

m◦(r,a j, f )−2logT ◦(r, f )+O(1).

Combining this estimate with (9.3.21), we have

q

∑
j=1

m◦(r,a j, f ) ≤ 2T ◦(r, f )−N1(r, f )+ logT ◦(r, f )

+
1
2
logλ (r, f )+O(1). (9.3.23)

This inequality brings us close to the spherical version of Nevanlinna’s second major
result.

Theorem 9.3.3. (Second fundamental theorem) Suppose that f is an entire mero-
morphic function. For distinct points a1,a2, . . .aq in S, the inequality

q

∑
j=1

m◦(r,a j, f ) < 2T ◦(r, f )−N1(r, f )+
logr
2

+O[logT ◦(r, f )] (9.3.24)

holds for each r outside an open set Δ such that
∫

Δ dr < ∞.

Proof: In view of (9.3.23), we only need to find an appropriate bound for λ (r, f ).
Let

L(r, f ) =
∫ r

0
λ (s, f )sds, K(r, f ) =

∫ r

r0

L(s, f )
s

ds.

Then (9.3.12) is
K(r, f ) ≤ T ◦(r, f )+ c, (9.3.25)

for some constant c= c( f ).
Let Δ1 be the set of r for which

λ (r, f ) > r−1L(r, f )2. (9.3.26)

For such r, 1< rλ/L2 = (dL/dr)L−2 =−d(L−1)/dr, so
∫

Δ1

dr <−
∫

Δ1

d
dr

{
1

L(r, f )

}
dr <

1
L(r1, f )

, (9.3.27)
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where r1 is the greatest lower bound of Δ1.
Similarly, let Δ2 be the set of r for which

L(r, f ) > rK(r, f )2. (9.3.28)

For such r, 1< L/rK2 = (dK/dr)K−2 =−d(K−1)/dr, so
∫

Δ2

dr <−
∫

Δ2

d
dr

{
1

K(r, f )

}
dr <

1
K(r2, f )

, (9.3.29)

where r2 is the greatest lower bound of Δ2.
For r in the complement of Δ = Δ1∪Δ2,

λ (r, f ) ≤ L(r, f )2

r
≤ [rK(r, f )2]2

r
= rK(r, f )4. (9.3.30)

By (9.3.1) and (9.3.25), the inequality (9.3.30) implies that

λ (r, f ) = O[rT ◦(r, f )4+ c1],

so
logλ (r, f ) = logr+O[logT ◦(r, f )]. (9.3.31)

Combining (9.3.31) with (9.3.23), we obtain (9.3.24). �

Theorem 9.2.4, Theorem 9.2.1, and Theorem 9.3.3 imply a more standard form
of the second fundamental theorem.

Theorem 9.3.4. Suppose that f is an entire meromorphic function. For distinct
points a1,a2, . . .aq in S, the inequality

q

∑
j=1

m(r,a j, f ) < 2T (r, f )−N1(r, f )+
logr
2

+O[logT (r, f )] (9.3.32)

holds for each r outside an open set Δ such that
∫

Δ dr < ∞.

Remark. For a somewhat different version of the Second Fundamental Theorem,
see Theorem 9.5.1.

9.4 Applications

The second fundamental theorem implies two deep results of Picard. The first is
better known in the equivalent form: a non-constant entire function can omit at most
one value; see Exercise 17. This result is sometimes called Picard’s “little” theorem
to distinguish it from the “big” version in Exercise 24 of Chapter 17. For a different
proof of the “little” theorem, see Section 17.3.
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Theorem 9.4.1. A non-constant entire meromorphic function can omit at most two
distinct values.

Proof: Suppose that f omits distinct values a1,a2, . . . ,aq. Then

m◦(r,a j, f ) = m◦(r,a j, f )+N(r,a j, f ) = T ◦(r, f ).

By Theorem 9.3.3, for r in the complement of a set Δ such that
∫

Δ dr < ∞,

q ≤ 2+
logr

2T ◦(r, f )
+O

(
logT ◦(r, f )
T ◦(r, f )

)
.

By (9.2.12) we may choose a sequence of such values rn → ∞ such that the limit of
the expression on the right is at most 2+1/2. �

Note that the argument proves a stronger result: that there are at most two values
a j for which

limsup
r→∞

N1(r,a j, f )
T ◦(r, f )

= 0, (9.4.1)

where N1(r,a, f ) comes from the counting function n1(r,a, f ) that assigns k− 1 to
each solution z of f (z), |z| < r that has multiplicity k. In fact, compare the sum of
such terms to N1(r, f ) and use (9.3.24).

The second theorem of Picard that was mentioned above has to do with algebraic
curves

w2 = P(z), (9.4.2)

where P is a polynomial of degree at least two, with no multiple zeros. Under a
change of variables by a linear fractional transformation, a polynomial of given
degree can be reduced to a canonical form. The first three are usually taken to be

P(z) = 1− z2; (9.4.3)

P(z) = 4z3−g2z−g3, g j �= 0; (9.4.4)

P(z) = (1− z2)(1− k2z2), k2 �= 1. (9.4.5)

In case (9.4.3), the curve (9.4.2) may be parametrized by setting

w(t) = cos t, z(t) = sin t.

As shown in Chapters 16 and 15, respectively, the curve can be parametrized in case
(9.4.4) by

w(t) = ℘′(t), z(t) = ℘(t),

where ℘ is the Weierstrass ℘ function, and can be parametrized in case (9.4.5) by
the Jacobi function sn:

w(t) = sn ′(t), z(t) = sn(t).
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A common feature here is that each of the functions used in the parametrization is
an entire meromorphic function.

The genus of a curve (9.4.2) is defined to be g if the degree of the polynomial P
is 2g+1 or 2g+2, so the curves we have considered so far have genus 0 and 1. The
curve (9.4.2) is said to be hyperelliptic if it has genus g> 1.

Theorem 9.4.2. (Picard) A hyperelliptic curve cannot be parametrized by entire
meromorphic functions.

We begin with an auxiliary result. A value a is said to be completely ramified
with respect to f if every root of f (z) = a is a multiple root. The Jacobi function sn
and the Weierstrass function℘ are examples of entire meromorphic functions with
four completely ramified values; see the discussion of (9.4.8).

Theorem 9.4.3. Suppose that f is an entire meromorphic function that is not ratio-
nal. Then f has at most four completely ramified values.

Proof: Let n1(r,a, f ) be the counting function introduced in the discussion of
(9.3.20) that assigns k− 1 to each solution z of f (z) = a, |z| < r, that has multi-
plicity k. If a is completely ramified with respect to f , then either f (z) = a has no
roots or each root is multiple. In either case it follows that

n1(r,a, f ) ≥ n(r,a, f )
2

.

Therefore the corresponding integral N1 of n1(s)/s satisfies

N1(r,a, f ) ≥ N(r,a, f )
2

.

It follows from this and (9.2.11) that

m◦(r,a, f )+N1(r,a, f ) ≥ 1
2
[m◦(r,a, f )+N(r,a, f )+O(1)]

=
1
2
T ◦(r, f )+O(1). (9.4.6)

Summing the inequalities (9.3.24) and (9.4.6) over completely ramified values
a1, . . . ,aq, we obtain, for most values of r,

q
2
T ◦(r, f ) =

q

∑
j=1

[m◦(r,a j, f )+N1(r,a j, f )]+O(1)

≤ 2T ◦(r, f )+
logr
2

+O(| logT ◦(r, f )|). (9.4.7)

Now if f has any completely ramified values, then

lim
r→∞

T ◦(r, f )
logr

≥ 2;
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see Exercise 13. Therefore, dividing (9.4.7) by T ◦(r, f ) and letting r→ ∞, we obtain
q≤ 4+1/2. �

Proof of Theorem 9.4.2. Suppose that

P(z) =
p

∏
j=1

(z−a j),

where the a j are distinct. Suppose that f and g are entire meromorphic functions
that satisfy the identity

f (z)2 = P(g(z)) =
p

∏
j=1

(g(z)−a j). (9.4.8)

Every zero of f 2 has multiplicity at least two, so every zero of each g(z)−a j must
be multiple. In other words, the a j are completely ramified values for g. It follows
from Theorem 9.4.3 that the degree p is at most 4, so the genus is at most 1. �

Remarks. Picard’s theorem applies to every algebraic curve of genus g≥ 2, but the
proof is more difficult. Such curves can be parametrized by automorphic functions;
see Section 7.8.

9.5 Further properties of meromorphic functions

In this section we mention a number of results that are closely related to what has
been covered in the chapter. Most of the details are left as exercises.

The second fundamental theorem is usually stated in a different form, with more
stringent limitations on the exceptional set.

Theorem 9.5.1. Suppose that f is an entire meromorphic function and k ≥ 0. For
distinct points a1,a2, . . .aq in S, the inequality

q

∑
j=1

m(r,a j, f ) < 2T (r, f )−N1(r, f )+O[logr+ logT ◦(r, f )]+O(logr) (9.5.1)

holds for each r outside an open set Δ such that
∫

Δ rk dr < ∞.

The proof is a minor adaptation of the proof of Theorem 9.3.3, then carried over
to the Nevanlinna characteristic; see Exercise 18.

One application of this more stringent condition on the exceptional set Δ comes
in connection with meromorphic functions of finite order. A function f is said to
have order ρ if
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limsup
r→∞

logT (r, f )
logr

= ρ. (9.5.2)

Theorem 9.5.2. Suppose that the entire meromorphic function f has finite order.
Then the inequality (9.5.1) is valid for every r.

For the proof, see Exercise 19.

Exercises

Throughout these exercises, the functions considered are taken to be entire, mero-
morphic, and not constant.

1. Suppose that f is meromorphic for |z|< r+δ , δ > 0, and has no zeros or poles
with |z| = r. Prove that the change in arg f (reiθ ) from θ = 0 to θ = 2π is the
number of zeros of f with |z| < r minus the number of poles of f with |z| < r.
(Hint: write f as

f (z) =
∏m

j=1(z−a j)

∏n
k=1(z−bk)

g(z),

where g has no zeros or poles with |z| ≤ r.)
2. Suppose that P is a polynomial. (a) Use the asymptotic behavior of |P| as |z| →

∞ to show that P has only finitely many zeros.

(b) Use (9.1.16) to show that P has exactly degP zeros, counting multiplicity.
3. Suppose that P and Q are polynomials with no common zeros. Use (9.1.16) to

show that the rational function P/Q, as a function on the Riemann sphere S,
attains each value in S exactly max{degP,degQ} times.

4. (a) Deduce from (9.1.11) that the function f (z) = ez has no zeros.

(b) For a �= 0,∞, determine N(r,a, f ) and T (r, f ).
5. Discuss f (z) = tanz.
6. Prove Proposition 9.1.2.
7. Prove that for positive x1,x2, . . . ,xp

log+
(

p

∑
j=1

x j

)
≤ log p+

p

∑
j=1

log+ x j.

(Hint: write x j = 1+ ε j.)
8. Prove that for positive x1,x2, . . . ,xp,

log+(x1x2 · · ·xp)≤
p

∑
j=1

log+ x j.

9. Show that T (r,0, f g)≤ T (r,0, f )+T (r,0,g).
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10. Show that if k �= 0, then

|T (r,k f )−T (r, f )| ≤ | log |k| |.
11. Show that

|T (r, f −a)−T (r, f )| ≤ log+ |a|+ log2.

12. Show that if f (0) �= 0 then

T (r, f )−T

(
r,
1
f

)
= log | f (0)|.

13. Prove that

lim
r→∞

T (r, f )
logr

< 2

if and only if f is a linear fractional transformation.
14. Suppose g is obtained from f by a linear fractional transformation:

g(z) =
a f (z)+b
c f (z)+d

, ad−bc= 1.

Show that |T (r,g)−T (r, f )| is a bounded function of r.
15. Show that

mρ(r, f ) =
∫
C

[m◦(r,a, f )− logd(c(a),a)] ρ(a)dm(a),

where c(a) is the leading coefficient in the Laurent expansion of f (z)− a at
z= 0.

16. Suppose g : (0,∞)→ (0,∞) and g′′ ≤ 0.

(a) Prove that g is convex downward: the graph of g(x), 0< b< x< c lies above
the line segment from g(b) to g(c).
(b) Prove that for any choice of positive a1, . . . ,an with ∑n

j=1 a j = 1 and any
positive x1, . . .xn,

g(
n

∑
j=1

a jx j) ≥
n

∑
j=1

a jg(x j).

(In fact the case n= 2 is part (a); prove the general case by induction.) This is a
discrete form of Jensen’s inequality.

(c) Prove a continuous form of Jensen’s inequality. If g is convex downward on
an interval [a,b], then

g

(
1

b−a

∫ b

a
f (x)dx

)
≥ 1

b−a

∫ b

a
g◦ f (x)dx.

17. Prove that Theorem 9.4.1 is equivalent to: a non-constant entire function can
omit at most one value.
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18. Prove Theorem 9.5.1: replace the conditions (9.3.26) and (9.3.28) by: Δ1 is the
set of r such that

λ (r, f ) ≥ rk−1L(r, f )2

and Δ2 is the set of r such that

L(r, f ) ≥ rk+1K(r, f )2.

19. Prove Theorem 9.5.2 by choosing k in Theorem 9.5.1 to be larger than ρ , and
noting that

(q−2)T (r, f )+N1 <
q

∑
j=1

N(r,a j, f )+Ck logr (9.5.3)

for r not in the exceptional set Δ . Show that if r ∈ Δ is sufficiently large, then
there is some r∗ not in Δ such that r< r∗ < r+r−k. Use this to show that (9.5.3)
holds for each such r with a larger (but fixed) choice of the constant Ck.

20. Suppose that f is meromorphic in the disk {z : |z| < R}. Prove a version of
Theorem 9.5.1 with O(logr) replaced by −(k+ ε) log(R− r)], valid outside an
exceptional set Δ with ∫

Δ

1
(R− r)k

dr < ∞.

Remarks and further reading

Our presentations of the proof by Ahlfors of the second fundamental theorem, and
of its applications, follow Hille [64], §14.6 and §14.7, (with some gaps filled and
minor errors corrected).

There is a large literature on further developments of the Nevanlinna theory.
These include refinements of the general theory, extensions to functions meromor-
phic in a disk (see Exercise 20) or in a sector, and to maps from one Riemann surface
to another.

The early history of Nevanlinna’s theory is nicely sketched by Gårding [47].
Hayman [61] is a very readable treatment of the first four decades of the theory.
Goldberg and Ostrovskii [50] contains further results, and an appendix by Eremenko
and Langley brings references into the 21st century. See also Rubel [124], Yang
[146], and Zheng [148].

For applications to complex dynamics, see Bergweiler [19]. Some surprising con-
nections with diophantine approximation were discovered by Vojta and others in the
1980s; see Cherry and Ye [32], Hu and Yang [67], and Ru [123].



Chapter 10
The gamma and beta functions

The factorial function is defined for positive integers n by n != n(n−1)(n−2) · · ·1.
It is convenient to shift by 1 and define the gamma function on the positive integers
by

Γ (1) = 1, Γ (n) = (n−1) !, n = 2,3,4, . . . .

Then Γ satisfies the functional equation

Γ (n+1) = nΓ (n), n = 1,2,3, . . . , (10.0.1)

and is uniquely determined by this, together with the condition Γ (1) = 1.

A number of mathematicians in the 17th and 18th centuries considered the prob-
lem of extending Γ (x) to all positive values x, or, eventually, as a meromorphic
function on C, while preserving the functional equation:

Γ (z+1) = zΓ (z) (10.0.2)

for each z for which Γ (z) is defined.
In this chapter we present two solutions to this problem, both due to Euler, and

prove that they are equivalent. Examination of the product of gamma functions leads
to the beta function, also due to Euler. Both functions occur naturally in many com-
putations in analysis, probability, and statistical mechanics. Further results include
Legendre’s duplication formula, Euler’s reflection formula, and asymptotic esti-
mates of Stirling and Stieltjes.

10.1 Euler’s product solution

Euler found a solution to the problem of extending the factorial function, Γ (n) =
(n−1) !, based on the identity

Γ (n+ k) = 1 ·2 · · ·(n−1) · [n(n+1) · · ·(n+ k−1)] = Γ (n)(n)k, (10.1.1)
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where (n)k denotes the shifted factorial or Pochhammer symbol, defined for any
z ∈ C by

(z)k = z(z+1) · · ·(z+ k−1), z ∈ C.

Now Γ (n+ k) is symmetric in k and n, leading to the identity

Γ (k) =
Γ (n)(n)k

(k)n
.

Euler’s idea was to let n → ∞ with k fixed, then (n)k ∼ nk, so

Γ (k) = lim
n→∞

Γ (n)nk

(k)n
.

Replacing k by z leads to a possible general definition:

Γ (z) = lim
n→∞

Γ (n)nz

(z)n
. (10.1.2)

To check convergence we use the two identities

(z)n

Γ (n)
= z · z+1

1
· z+2

2
· · · z+n−1

n−1

= z ·
(
1+

z
1

)(
1+

z
2

)
· · ·

(
1+

z
n−1

)

and

n =
Γ (n+1)

Γ (n)
=

2
1
· 3
2
· · · n

n−1
= (1+1)

(
1+

1
2

)
· · ·

(
1+

1
n−1

)
.

Therefore
Γ (n)nz

(z)n
=

1
z

n−1

∏
j=1

(
1+

z
j

)−1(
1+

1
j

)z

. (10.1.3)

The logarithm of the j-th factor is O( j−2) for large j, see Lemma 1.5.1. Therefore
we have convergence:

Γ (z) =
1
z

∞

∏
j=1

(
1+

z
j

)−1(
1+

1
j

)z

, (10.1.4)

so long as no factor blows up, i.e. so long as z is not a non-positive integer (see the
discussion in Section 1.5). It is easily checked from this product that the poles are
simple and that there are no zeros. We have

Theorem 10.1.1. Γ is meromorphic in C with simple poles at the non-positive inte-
gers, and no zeros.

It can be checked that Γ satisfies the functional equation (10.0.2): Exercise 1.
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Let us look at the reciprocal:

(z)n

Γ (n)nz = zn−z
n−1

∏
j=1

z+ j
j

= zn−z
n−1

∏
k=1

(
1+

z
j

)

= zn−z
n−1

∏
j=1

[(
1+

z
j

)
e−z/ j

]
exp

(
z+

z
2
+ · · ·+ z

n−1

)

= z exp

{
z

(
1+

1
2
+ · · ·+ 1

n−1
− logn

)} n−1

∏
j=1

(
1+

z
j

)
e−z/ j.

The logarithms of the factors in the product are O( j−2), while the coefficient of z in
the exponential factor on the left is

n−1

∑
j=1

1
j
− logn =

n−1

∑
j=1

1
j
−

∫ n

1

dt
t

=
n−1

∑
j=1

∫ j+1

j

{
1
j
− 1

t

}
dt.

The integrand of j-th integral is O( j−2), so the series of integrals converges. The
limit is, by definition, Euler’s constant

γ = lim
n→∞

[
n−1

∑
j=1

1
j
− logn

]
= 0.5772 . . . . (10.1.5)

For later use, we note that the preceding argument shows that

−γ +
n−1

∑
k=1

1
k

= logn+O(n−1). (10.1.6)

Theorem 10.1.2. The reciprocal of the gamma function is the product

1
Γ (z)

= zeγz
∞

∏
n=1

(
1+

z
n

)
e−z/n. (10.1.7)

It is an entire function with simple zeros at the non-positive integers.

Proof: The previous argument established the product representation (10.1.7). The
partial products are entire functions of z and the convergence is uniform on bounded
sets, so the product is entire (Proposition 1.2.6). The zeros are precisely the zeros of
the factors. �

Consider now the product of reciprocals

s(z) =
1

Γ (z)Γ (1− z)
. (10.1.8)

The function s is an entire function of z. The zeros of s are precisely the integers.
Moreover s(−z) =−s(z) and s(z+1) =−s(z). (The proof of these statements is left
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as an exercise.) This suggests that s(z) may be a fixed multiple of sinπz. To prove
this we use a second, more commonly used, representation of the gamma function.

10.2 Euler’s integral solution and the beta function

Euler noted that
∫ 1

0
(− logx)n dx = n !, n = 0,1,2, . . . . (10.2.1)

This suggests defining Γ by

Γ (z) =
∫ 1

0
(− logx)z−1 dx.

The integral converges for Rez > 0. A change of variables x = e−t leads to the more
commonly used form

Γ (z) =
∫ ∞

0
e−t tz−1 dt, Rez > 0. (10.2.2)

We will see below that this is consistent with (10.1.4). One can derive directly that
Γ , as defined by (10.2.2), has an extension that is meromorphic in all of C, with
simple poles at the non-negative integers: Exercises 8 and 9.

In order to prove equivalence of (10.1.4) and (10.2.2), we make an excursion
into products and the beta function. With the definition (10.2.2), and assuming that
Rea > 0, Reb > 0,

Γ (a)Γ (b) =
∫ ∞

0

∫ ∞

0
e−(s+t)sa−1tb−1 dsdt. (10.2.3)

After some changes of variables, (10.2.3) becomes

Γ (a)Γ (b) = Γ (a+b)
∫ ∞

0
ua−1(1+u)−a−b du; (10.2.4)

see Exercise 10. (For positive integer values of a and b, an equivalent formula was
known to John Wallis about 1655.)

The integral here gives, by definition, one form of the beta function:

B(a,b) =
∫ ∞

0
ua−1(1+u)−a−b du, Rea > 0, Reb > 0. (10.2.5)

The change of variables u = 1/(1− s) leads to a second, more commonly used form

B(a,b) =
∫ 1

0
sa−1(1− s)b−1 ds, Rea > 0, Reb > 0. (10.2.6)
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Rewriting (10.2.4) as

B(a,b) =
Γ (a)Γ (b)
Γ (a+b)

(10.2.7)

shows that B can be extended so as to be defined and holomorphic in a and in b, for
any pair a,b for which neither a nor b is a pole of Γ .

We will use (10.2.6) and (10.2.7) to prove that the two definitions of Γ agree.

Lemma 10.2.1. As defined by (10.2.2), Γ satisfies

Γ (x)xz

Γ (x+ z)
→ 1 as x →+∞, Rez > 0.

Proof: With Γ defined by (10.2.2), the left side here is xzB(z,x)/Γ (z), so we want
to prove

xz
∫ 1

0
sz−1 (1− s)x−1 ds → Γ (z) as x →+∞. (10.2.8)

We write this expression as

xz
∫ 1/2

0
sz−1 (1− s)x−1 ds+ xz

∫ 1

1/2
sz−1 (1− s)x−1 ds.

The integrand in the second integral is dominated by 22−x, so the second integral
decays exponentially in x and its product with xz has limit zero. The first summand
becomes, after letting s = t/x,

∫ x/2

0
tz−1

(
1− t

x

)x (
1− t

x

)−1
dt.

The integrand is dominated by

tRez−1 · e−t ·2,
and, as x → ∞, it converges uniformly on any given bounded interval to tz−1e−t . The
limit (10.2.8) follows. �

Theorem 10.2.2. The two definitions (10.1.2) and (10.2.2) agree, for Rez > 0.

Proof: Note that the functional equation (10.0.2) can be extended to show that

Γ (z+ k) = (z)k Γ (z). (10.2.9)

Thus, with Γ defined by the integral formula (10.2.2), we can use (10.2.8) to obtain

Γ (n)nz

(z)n
=

Γ (n)nz

Γ (n+ z)
·Γ (z) → Γ (z)

as n → ∞. Thus the two definitions coincide for Rez > 0. �
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It follows that the analytic continuation of the integral form (10.2.2) outlined in
Exercises 8 and 9 agrees with the product form (10.1.4) everywhere.

10.3 Legendre’s duplication formula

For positive integers n,

Γ (2n) = (2n−1) !
= 1 ·3 · · ·(2n−1) ·2 ·4 · · ·(2n−2)

= 2n−1
[(

1
2

)
·
(
3
2

)
· · ·

(
1
2
+n−1

)]
·2n · (n−1) !.

Invoking the functional equation (10.2.9), we get

Γ ( 12 ) ·Γ (2n) = 22n−1Γ (n+ 1
2 )Γ (n). (10.3.1)

Since Γ (1/2) = π1/2 (Exercise 20), (10.3.1) can also be written as

Γ (2n) = π−1/2 22n−1Γ (n+ 1
2 )Γ (n).

This is the integer case of Legendre’s duplication formula for the gamma function.

Theorem 10.3.1. (Legendre) For any 2z �= 0,−1,−2,−3, . . . ,

Γ ( 12 )Γ (2z) = 22z−1Γ (z+ 1
2 )Γ (z). (10.3.2)

For a proof, see Exercise 15 or Exercise 16.

10.4 The reflection formula and the product formula for sine

Let us return to the function s(z) = 1/Γ (1− z)Γ (z).

Theorem 10.4.1. (Euler’s reflection formula)

Γ (z)Γ (1− z) =
π

sinπz
, z /∈ Z. (10.4.1)

Proof: It is enough to prove this under the assumption that 0 < Rez < 1. We start
with the identity

Γ (z)Γ (1− z) = B(z,1− z) =
∫ ∞

0

tz−1

1+ t
dt. (10.4.2)
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0

1/R R

Fig. 10.1 The contour ΓR

Given R > 1, let ΓR denote the contour that runs along the real axis from R to 1/R, in
the clockwise direction around the circle of radius 1/R centered at the origin, then
along the real axis from 1/R to R, and counterclockwise around the circle of radius
R centered at the origin, back to R; see Figure 10.1.

For t in the domain enclosed by this contour, we take the branch of log t that has
a real limit as t approaches the positive real axis from the upper half plane. Then
the limit as t approaches the positive real axis from the lower half plane differs
by a factor 2πi. The corresponding determinations of tz = exp(z log t) differ by a
multiplicative factor exp(2πiz).

The function f (t) = tz−1/(1+ t) has a unique pole in the domain enclosed by ΓR,
at t =−1, with residue −exp(iπz). Therefore

1
2πi

∫

ΓR

tz−1

1+ t
dt = −eiπz.

For |t|= R the integrand is O(RRez−2), so the integral over this circle has limit zero
as R → ∞. It follows from these considerations that B(z,1− z) satisfies

1− e2πi

2πi
B(z,1− z) = −eiπz.

Together with (10.4.2), this is (10.4.1). �

The reflection formula (10.4.1) can be used, together with (10.1.4) and (10.0.2),
to prove Euler’s product formula for sine:

sinπz = πz
∞

∏
n=1

(
1− z2

n2

)
; (10.4.3)

see Exercise 17. This in turn can be used to derive the result that first made Euler
famous (among European mathematicians):

∞

∑
n=1

1
n2

=
π2

6
; (10.4.4)

see Exercise 18.
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10.5 Asymptotics of the gamma function

The most widely used result about the behavior of the gamma function for large
values of the argument is Stirling’s approximation:

Theorem 10.5.1. The Γ function satisfies

Γ (x) =
(x

e

)x
[(

2π
x

)1/2

+O(x−3/2)

]
(10.5.1)

as x →+∞.

Proof: Starting with

Γ (x) =
1
x

Γ (x+1) =
1
x

∫ ∞

0
e−t tx dt,

note that the integrand has a maximum at t = x, which suggests a change of variables
t = xu:

Γ (x) = xx
∫ ∞

0
(ue−u)x du =

(x
e

)x ∫ ∞

0

(
ue1−u)x

du.

The integrand decays exponentially with respect to x away from u = 1, so we may
restrict attention to a small interval centered at u = 1. The function ue1−u agrees to
second order at u = 1 with the function e−(u−1)2/2, so in a neighborhood of u = 1,

ue1−u = e−(u−1)2/2 [
1+O

(
(u−1)3

)]
.

Because of the exponential decay, the asymptotics of Γ (x) as x → ∞ agree with
those of (x

e

)x ∫ ∞

−∞
e−xs2/2[1+O(xs3)]ds. (10.5.2)

Note that
∫ ∞
−∞ exp(−xs2/2)s3 ds = 0, so (10.5.2) is

(x
e

)x ∫ ∞

−∞
e−xs2/2[1+O(xs3)]ds =

(x
e

)x
[(

2π
x

)1/2

+O(x−3/2)

]
. �

Here we used the well-known evaluation
[∫ ∞

−∞
e−x2/2 dx

]2
=

∫∫

R2
e−(x2+y2)/2 dxdy

=
∫ ∞

0

∫ 2π

0
e−r2/2r dθ dr

= 2π
∫ ∞

0
e−r2/2 d(r2/2) = 2π.
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The approximation (10.5.1) was originally proved for integer x; see the discus-
sion in Chapter 24 of [121]. It plays an important role in statistical mechanics, for
example. In Chapter 13 we will need a more global asymptotic estimate. To make
the strategy of the proof more transparent we start with another derivation of the
integer case. The idea is to estimate logΓ (n), and the first observation is that it is
easier to deal with integrals than sums:

logΓ (n) =
n−1

∑
k=1

logk =
n−1

∑
k=1

∫ k

1

ds
s

= (n−1)
∫ 2

1

ds
s
+(n−2)

∫ 3

2

ds
s
+ · · ·+

∫ n−1

n−2

ds
s

=
∫ n−1

1

n−1− [s]
s

ds, [s] = largest integer ≤ s.

The next step is to approximate the step function [s] by the continuous function
s− 1

2 , so that

logΓ (n) =
∫ n−1

1

n− s− 1
2

s
ds+

∫ n−1

1

s− [s]− 1
2

s
ds

=
(
n− 1

2

)
log(n−1)− (n−2)+

∫ n−1

1

s− [s]− 1
2

s
ds. (10.5.3)

Writing log(n−1) = logn(1−1/n), we see that
(
n− 1

2

)
log(n−1) =

(
n− 1

2

)
logn−1+O(n−1). (10.5.4)

The second integral in (10.5.3) is to be considered as a remainder. The point of using
s− 1

2 rather than s as an approximation to [s] is that s− [s]≥ 0. Therefore there is no
cancellation, and the resulting integral against 1/s is O(logn). However s− [s]− 1

2
has integral 0 over each interval [k,k+ 1], so the extra term is smaller. In fact the
function

f (s) =
∫ s

0

(
s− [s]− 1

2

)
ds (10.5.5)

is periodic, since the integrand is periodic and f (k+1) = f (k) = 0. Therefore f is
bounded. Integration by parts gives

∫ n−1

1

s− [s]− 1
2

s
ds =

∫ n−1

1

f (s)
s2

ds =
∫ ∞

1

f (s)
s2

ds+O(n−1). (10.5.6)

From (10.5.3), (10.5.4), (10.5.5), and (10.5.6) we obtain

logΓ (n) = (n− 1
2 ) logn−n+C+O(n−1), (10.5.7)

whereC is constant. According to (10.5.1),C = log
√
2π . (For an independent deter-

mination of C, see Exercise 21.)
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Since Γ (z) has poles at the non-positive integers, the approximation (10.5.1) fails
near the negative real axis. Starting from (10.5.7), and adapting the argument just
given, we shall see that the approximation extends to the complement of any angular
sector that includes the negative real axis.

Theorem 10.5.2. (Stieltjes) The approximation

Γ (z) =
( z

e

)z
[(

2π
z

)1/2

+O(z−3/2)

]
(10.5.8)

is valid as z → ∞, uniformly in any sector {z : |argz| ≤ π −δ}, δ > 0.

Proof: We work with the logarithm of the product representation of 1/Γ (z), (10.1.7):

logΓ (z) = − logz− γz+
∞

∑
n=1

{ z
n
− log

(
1+

z
n

)}

= − logz+ z

(
n−1

∑
k=1

1
k
− γ

)
−

n−1

∑
k=1

log
(
1+

z
k

)
+O(n−1).

Taking into account (10.1.5) and writing 1+ z/k as (z+ k)/k, we have

logΓ (z) = − logz+ z logn−
n−1

∑
k=1

log(k+ z)+
n−1

∑
k=1

logk+O(n−1)

= − logz+ z logn−
n−1

∑
k=1

log(k+ z)+ logΓ (n)+O(n−1). (10.5.9)

Adapting the previous argument,

n−1

∑
k=1

log(z+ k) =
n−1

∑
k=1

∫ k+z

1

ds
s

=
n−1

∑
k=1

{∫ k+z

z

ds
s
+

∫ z

1

ds
s

}
=

n−1

∑
k=1

{∫ k

0

ds
s+ z

}
+(n−1) logz

=
∫ n−1

0

n−1− [s]
s+ z

ds+(n−1) logz. (10.5.10)

Next,

∫ n−1

0

n−1− [s]
s+ z

ds =
∫ n−1

0

n− 1
2 − s

z+ s
ds+

∫ n−1

0

s− 1
2 − [s]

z+ s
ds. (10.5.11)

The first integral on the right is
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∫ n−1

0

(n− 1
2 + z)− (z+ s)

z+ s
ds

= (n− 1
2 + z)[log(n−1+ z)− logz]− (n−1)

= (n− 1
2 + z)

[
logn+ log

(
1+

z−1
n

)
− logz

]
− (n−1)

= (n− 1
2 + z)[logn− logz]+ (z−1)− (n−1)+O(n−1). (10.5.12)

Consider now the second integral on the right in (10.5.11):

∫ n−1

0

s− 1
2 − [s]

z+ s
ds =

∫ n−1

0

f (s)
(z+ s)2

ds, (10.5.13)

where f is given as before, by (10.5.5). For s ≥ 0 and |θ |= |argz|< π −δ , δ > 0,
it follows that cosθ ≥−1+ ε for some ε > 0, so

|z+ s|2 = |z|2+2|z|scosθ + s2 ≥ (|z|2+ s2)min{1,1+ cosθ} ≥ ε(|z|2+ s2).

Therefore the integral (10.5.13) is O(|z|−1), uniformly in the sector. Combining this
with (10.5.7) to (10.5.13), we have

logΓ (z) = − logz+ z logn+ logΓ (n)
−{

(n− 1
2 + z)[logn− logz]+ z−n+(n−1) logz

}
+O(n−1+ |z|−1)

= (z− 1
2 ) logz− z+[logΓ (n)− (n− 1

2 ) logn+n]+O(n−1+ |z|−1)

= (z− 1
2 ) logz− z+ log

√
2π +O(n−1+ |z|−1).

Letting n → ∞, we obtain (10.5.8). �

Exercises

1. Using (10.1.4), verify the functional equation (10.0.2).
2. Verify the following properties of the product (10.1.8): it is entire, odd, and

satisfies s(z+1) =−s(z).
3. Use (10.1.4) to prove Wallis’s formula

π
4

=
2
3
· 4
3
· 4
5
· 6
5
· · · 2n

2n+1
· 2n+2
2n+1

· · · .

4. Show that if x and y are real and x �= 0,−1,−2, . . . , then

∣∣∣∣
Γ (x)

Γ (x+ iy)

∣∣∣∣
2

=
∞

∏
n=0

{
1+

y2

(x+n)2

}
,

proving that |Γ (x+ iy)|< |Γ (x)| unless y = 0.
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5. Prove (10.2.1).
6. Suppose Γ has a representation of the form

Γ (z) =
∫ ∞

0
e−t f (t,z)dt.

Show that the functional equation will hold, for Rez > 0, provided that

∂
∂ t

[ f (t,z+1)] = z f (t,z).

The simplest choice here is f (z, t) = tz−1, leading to the formula (10.2.2).
7. Verify that (10.2.2) implies that for positive integer n, Γ (n) = (n−1) !.
8. Break the interval of integration in (10.2.2) into I0 = (0,1) and I1 = (1,∞).

Show that the I1 piece extends to an entire function of z.
9. In the I0 piece from the previous exercise, expand the exponential in power

series and integrate term-by-term to show that this part extends as an entire
meromorphic function with simple poles, and show that the residue at −k is
(−1)k/k !.

10. In (10.2.3), change variables to u, t with u= s/t and then to u,x with x= t(1+u)
to derive (10.2.4).

11. Derive (10.2.6) from (10.2.5).
12. Show that if Reα > 0, Reβ > 0, and u < x or u > y, then

∫ y

x

(x− t)α−1(t − y)β−1

|t −u|α+β dt = B(α,β )
(x− y)α+β−1

|x−u|β |y−u|α .

13. Show that if Rea > 0 and Reb > 0, then
∫ 1

0
ta−1(1− t2)b−1 dt =

1
2
B

(
1
2

a,b

)
.

14. Show that if Rea > 0 and Reb > 0, then

∫ π/2

0
sina−1 θ cosb−1 θ dθ =

1
2
B

(
1
2

a,
1
2

b

)
.

15. Prove the duplication formula (10.3.2). (Hint: by uniqueness of analytic contin-
uation, it may be assumed that Rez > 0. Start with

B(z,z) = 2
∫ 1/2

0
sz−1(1− s)z−1 ds

and let t = 4s(1− s).)
16. Use (10.1.2), (10.2.1), and (10.3.1) to prove (10.3.2).
17. Use (10.4.1), (10.0.2), and (10.1.4) to prove (10.4.3).
18. Use (10.4.3) to prove (10.4.4).
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19. Show that the second derivative of logΓ (z) is ∑∞
n (z+ n)−2. Thus logΓ (x) is

a convex function for x > 0. The Bohr–Mollerup Theorem says that Γ is the
unique meromorphic extension of (n−1)! that has this property.

20. Show that
Γ ( 12 ) =

√
π.

This can be done by a change of variables in either (10.2.2) or (10.2.7); in the
case of (10.2.2), it reduces to evaluating

∫ ∞
0 e−x2 dx.

21. Evaluate the constant in the approximation (10.5.8) by considering Γ (z) for
z = 1

2 + it, t real, t → ∞. Note that

|Γ ( 12 + it)|2 = Γ ( 12 + it)Γ ( 12 − it) =
π

sin( 12 + it)π
=

π
cosh(πt)

.

22. (a) Show that the approximation (10.5.8) can be sharpened to

Γ (z) =
( z

e

)z
(
2π
z

)1/2 [
1+

1
12z

+O(z−2)
]
,

uniformly for |argz| ≤ π −δ .
(b) Describe how to get further improvements to the approximation.

Remarks and further reading

Artin’s treatment of the gamma function [12] is classic. For the history, see Nielsen
[108], Dutka [41], and Roy [121]. Two natural characterizations of the gamma func-
tion are due to Bohr and Mollerup [25] and to Wielandt: see [119] or [16], §2.4.

The gamma function and its properties are the basis for integral representations of
solutions of hypergeometric equations and generalized hypergeometric equations;
see Section 6.6 for the hypergeometric equation and the exposition [15] for the
general case.

The gamma and beta functions provide many standard probability distributions;
see any text on probability, statistics, or statistical mechanics. Additional identities
and other information on the functions themselves can be found in any book on
“special functions,” e.g. [7], [16], [111].



Chapter 11
The Riemann zeta function

The Riemann zeta function is defined for Res> 1 by the series

ζ (s) = 1+
1
2s

+
1
3s

+
1
4s

+ . . . . (11.0.1)

Euler investigated this series, long before Riemann, and noted that

ζ (s) = ∏
p prime

(
1

1− p−s

)
. (11.0.2)

This follows by expanding

1
1− p−s = 1+

1
ps

+
1
p2s

+
1
p3s

+ . . .

and using the uniqueness of prime factorization: a positive integer n has a unique
representation

n = pd11 pd22 . . . pdmm ,

where p1 < p2 < · · ·< pm are primes.
As Euler noted, the fact that the series (11.0.1) diverges at s = 1 gives another

proof that the set of primes is infinite—in fact ∑p(1/p) diverges. (This is only the
simplest of the connections between properties of the zeta function and properties
of primes.)

Convergence of the product (11.0.2) for Res > 1 and divergence of the sum
∑p(1/p) can be established by taking the logarithm of (11.0.2). In fact there is a
quantitative estimate on the rate of divergence:

∑
p≤n

1
p

∼ log logn as n→ ∞. (11.0.3)

See Exercises 6 and 7.
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Further properties of the zeta function are developed in this chapter: its exten-
sion as an entire meromorphic function, evaluation at the even integers, a functional
equation, and the fact that ζ (s) �= 0 when Res = 1. This last fact may seem to be
a technical point, but it was a key step in the original proofs of the prime number
theorem.

11.1 Properties of ζ

It can be seen that ζ is holomorphic on the half plane {s : Res > 1}. This follows
more easily from an integral representation, which itself follows from the identity

n−s =
1

Γ (s)

∫ ∞

0
e−nt ts−1 dt, Res> 1.

(Take nt as the variable of integration.) Summing,

ζ (s) =
1

Γ (s)

∫ ∞

0

e−t

1− e−t t
s−1 dt =

1
Γ (s)

∫ ∞

0

ts−1 dt
et −1

, Res> 1. (11.1.1)

Let us write this in two pieces:

ζ (s) = ζ0(s)+ζ1(s) =
1

Γ (s)

∫ 1

0

ts−1 dt
et −1

+
1

Γ (s)

∫ ∞

1

ts−1 dt
et −1

.

The function ζ1 extends as an entire function of s, with zeros at the poles of Γ , i.e.
the non-positive integers. To study ζ0 we look more closely at the integrand. Now

1
et −1

=
1

t+ 1
2 t

2+O(t3)
=

1
t
· 1
1+ t/2+O(t2)

=
1
t
· (1− t/2+O(t2)

)
=

1
t
− 1

2
+O(t)

for |t|< 2π . We define a function f , holomorphic for |t|< 2π , by

f (t) =
1

et −1
− 1

t
+

1
2

and rewrite

ζ (s) =
1

Γ (s)

{∫ 1

0

[
1
t
− 1

2
+ f (t)

]
ts−1 dt+

∫ ∞

1

ts−1

et −1
dt

}

=
1

Γ (s)

{
1

s−1
− 1

2s
+

∫ 1

0
f (t) ts−1 dt+

∫ ∞

1

ts−1

et −1
dt

}
, (11.1.2)

for Res > 1. Since f (t) = O(t), this formula can be used to extend ζ to the half-
space {s : Res> 0}.
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This process can be continued to the entire plane. It is an exercise to check that f
is holomorphic in the disk {z : |z|< 2π} and is odd. Therefore f has a power series
expansion that converges uniformly on the interval [0,1], with only odd powers:

1
et −1

− 1
t
+

1
2

=
∞

∑
m=1

B2m

(2m) !
t2m−1. (11.1.3)

The B2m are, by definition, the Bernoulli numbers. They can be computed recur-
sively by multiplying (11.1.3) by et − 1. (There are a number of different con-
ventions for numbering these coefficients and choosing their signs: let the reader
beware.)

The integral defining ζ0 can be integrated term-by-term, giving

ζ0(s) =
1

Γ (s)

[
1

s−1
− 1

2s
+

∞

∑
k=1

(
B2k

(2k) !
· 1
s+2k−1

)]
.

The expression in brackets has simple poles at s = 1 and s = 0, and at the odd
negative integers s = −(2k− 1). The factor 1/Γ (s) cancels all these, except the
pole at s= 1. It follows that ζ extends meromorphically with a simple pole at s= 1.

In view of Exercise 9 the value at s+2k−1= 0 is

B2k

(2k) !
· (−1)2k−1(2k−1)! = −B2k

2k
.

Putting these pieces together gives the following.

Theorem 11.1.1. The zeta function is an entire meromorphic function. The only pole
is a simple pole at s= 1 with residue 1. Moreover,

ζ (−2n) = 0, n = 1,2,3, . . . ;

ζ (0) = −1
2
;

ζ (1−2k) = −B2k

2k
, k = 1,2,3, . . . .

The location of the other zeros of ζ is a matter of some interest; see Chapter 13.

11.2 The functional equation of the zeta function

There is another way, due to Riemann, to extend ζ . Consider the integral

Iδ (s) =
1
2πi

∫
Cδ

(−x)s

ex−1
dx
x
. (11.2.1)
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0 δ

Fig. 11.1 Riemann’s contour Cδ

Here Cδ is a contour that goes from +∞ to δ > 0 along the positive real axis, goes
in the positive direction around the circle {z : |z|= δ}, and returns to +∞ along the
positive real axis; see Figure 11.1. It is assumed that δ < 2π , so the integrand is
holomorphic for 0< |z| ≤ δ .

This takes some interpretation, particularly if s is not an integer. We take the
principal branch of the power, with (−x)s holomorphic for x in Ω = C\ [0,∞), the
complement of the non-negative real axis.

Along the first part of the contour, the argument of −x is −iπ , so the integral
along this part is

−e−iπs
∫ ∞

δ

xs−1

ex−1
dx.

Similarly, the integral along the final part of the contour is

eiπs
∫ ∞

δ

xs−1

ex−1
dx,

so

Iδ (s) =
eiπs− e−iπs

2πi

∫ ∞

δ

xs−1

ex−1
dx+ (integral around {z : |z|= δ})

=
sinπs

π

∫ ∞

δ

xs

ex−1
dx
x
+ (integral around {z : |z|= δ}). (11.2.2)

Several things should be noted here:

1. Iδ (s) is independent of δ > 0 (Cauchy’s theorem).

2. Iδ (s) is an entire function of s. In fact zs is an entire function of s for each z �= 0,
and the growth of ex guarantees convergence of the integral.

3. When Res> 1 the integral over the circle has limit 0 as δ → 0; Exercise 10. Thus
if Res> 1, we may let δ → 0 and conclude that

Iδ (s) =
sinπs

π

∫ ∞

0

xs−1

ex−1
dx.

Taking into account the reflection formula for the gamma function, (10.4.1), together
with (11.1.1), we have
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Iδ (s) =
1

Γ (s)Γ (1− s)

∫ ∞

0

xs−1

ex−1
dx

=
ζ (s)

Γ (1− s)
, Res> 1. (11.2.3)

4. Since Iδ is an entire function of s, the identity (11.2.3) extends to all s �= 1,2,3, . . . .
In particular, we shall want to use (11.2.3) for Res < 0. This leads to Riemann’s
integral formula that extends ζ :

ζ (s) =
Γ (1− s)

2πi

∫
Cδ

(−x)s

ex−1
dx
x
. (11.2.4)

5. The integrand is meromorphic in the domain “bounded” byCδ , with poles where
ez = 1, i.e. z = 2nπi, n = ±1,±2, . . . . The residues at these points are certain mul-
tiples of |n|s−1. It follows that if the integral around large circles {z : |z|= R} tends
to zero, then Iδ (s) for Re(1− s) > 1 may be a multiple of ζ (1− s). If so, then we
obtain a relation between ζ (s) and ζ (1− s): the functional equation for ζ .

Theorem 11.2.1. The zeta function satisfies the identity

ζ (s) = 2Γ (1− s)(2π)s−1 sin
(πs
2

)
ζ (1− s). (11.2.5)

Proof: As suggested above, the idea is to compute the integral (11.2.4) by the residue
calculus. We begin with a computation of the residues, and then justify the argument.
(Note that the negative sign in (11.2.4) corresponds to changing the curveCδ , so that
the following residue argument is applicable.)

The residues occur at the singularities of 1/(ez− 1), which are the points z =
2nπi, n �= 0. Each is a simple pole 1/(ez−1)with residue 1. For n a positive integer,

(−in)s−1+(in)s−1 =
[
e−i 12π(s−1) + ei

1
2π(s−1)

]
ns−1

= −i

[
eI

1
2πs− e−i 12πs

]
ns−1 = 2sin(πs/2)ns−1.

Assuming that the residue calculus is legitimate here,

ζ (s) = Γ (1− s)
∞

∑
n=1

(2nπ)s−12sin
(πs
2

)
.

Thus, formally, we have derived (11.2.5).
To justify this calculation, let

Ωδ ,n = {z ∈ Ωδ : |z|< (2n+1)π}.



160 11 The Riemann zeta function

The residue calculus applies to each domain Ωδ ,n, so to complete the proof we need
only to show that for Res< 0,

lim
n→∞

∫
|z|=(2n+1)π

zs−1

ez−1
dz = 0.

The integral of |zs−1| over this circle is O(nRes), so we can establish (11.2.5) for
Res< 0 by showing that 1/(ez−1) is bounded on the circle, uniformly with respect
to n. The validity for every s follows by analytic continuation.

Let r = (2n+1)π , so the circle is {reiθ : 0≤ θ < 2π}. Now
exp(reiθ ) = er cosθ eir sinθ

has modulus er cosθ , so the distance from exp(reiθ ) to z= 1 is at least 1−1/e unless
−1≤ r cosθ ≤ 1. In this case cos2 θ ≤ 1/r2, so

(1− sinθ)(1+ sinθ) = 1− sin2 θ ≤ 1
r2
.

If sinθ > 0, we have 1− sinθ ≤ 1/r2. Thus, for each 2mπi,

|r sinθ −2mπ| ≥ |r−2mπ|− |r− r sinθ | ≥ |2n+1−2m|π − 1
(2n+1)π

≥ π − 1
(2n+1)π

>
π
2
.

The same argument applies if sinθ < 0. This shows that if the modulus of exp(reiθ )
is close to 1, then the argument differs from every 2mπ by more than π/2. Thus
1/(ez−1) is bounded on the curve, uniformly with respect to n. �

11.3 Zeros

The following was proved independently by de la Vallée Poussin and Hadamard, and
used in their proofs of the prime number theorem. We follow de la Vallée Poussin’s
argument here.

Theorem 11.3.1. The zeta function has no zeros on the line {s : Res= 1}.

Proof: Consider the negative of the logarithmic derivative

−ζ ′(s)
ζ (s)

= ∑
p

[
log(1− p−s)

]′ = ∑
p

log p · p−s

1− p−s = ∑
p

log p
ps−1

.

We would prefer a simpler denominator, like ps. Since
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1
ps−1

=
1
ps

+
{

1
ps−1

− 1
ps

}
=

1
ps

+
1

ps(ps−1)
,

we pass to

−ζ ′(s)
ζ (s)

= ∑
p

log p
ps

+∑
p

log p
ps(ps−1)

≡ Φ(s)+∑
p

log p
ps(ps−1)

. (11.3.1)

The last sum converges for Res> 1/2, since it is dominated by ∑(logn/n2s). There-
fore Φ and −ζ ′/ζ have the same singularities for Res= 1. In particular, if ζ has a
zero of order m at 1+ iα , α > 0, then the residue of −ζ ′/ζ at this point is

lim
ε→0

ε Φ(1+ ε + iα) = −m. (11.3.2)

If α = 0, this limit is 1.
Suppose that β > 0 and suppose that ζ has a zero of order m at 1+ 2iβ and a

zero of order k (possibly zero) at 1+4iβ . By the reflection principle, ζ vanishes to
the same orders at 1−2iβ and 1−4iβ . Now k≥ 0, and we want to show that m= 0,
i.e. ζ does not vanish at 1±2iβ . For ε > 0,

0 < ε ∑
p

log p
p1+ε (p

iβ + p−iβ )4

= ε [Φ(1+ ε −4iβ )+4Φ(1+ ε −2iβ )+6Φ(1+ ε)
+4Φ(1+ ε +2iβ )+Φ(1+ ε +4iβ )] .

Taking the limit as ε ↓ 0,
0 ≤ −k−4m+6−4m− k = 6−2k−8m,

so m= 0. �

11.4 ζ (2m)

We used Euler’s product formula for sine to evaluate ζ (2). In principle the product
formula can be used to evaluate ζ at each positive even integer. Euler did this by
taking the derivative of the logarithm of both sides, using the right side to find the
Maclaurin series and expressing the left side in terms of eiπz.

Let us carry this out. Taking the derivative of the logarithm of both sides of the
product formula

sinπz = πz
∞

∏
n=1

(
1+

z
n

)(
1− z

n

)

and subtracting 1/z from each side give
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π cosπz
sinπz

− 1
z

=
∞

∑
n=1

(
1

n+ z
− 1

n− z

)
. (11.4.1)

Each side is holomorphic for |z|< 1. The k-th derivative of the right side is

∞

∑
n=1

{
(−1)kk !
(n+ z)k+1 −

k !
(n− z)k+1

}
.

Thus the Maclaurin expansion (the Taylor expansion at z = 0) of the right side of
(11.4.1) is

−2
∞

∑
m=1

ζ (2m)z2m−1. (11.4.2)

On the other hand, taking into account (11.1.3), the left side of (11.4.1) is

iπ
eiπz+ e−iπz

eiπz− e−iπz −
1
z
= iπ

e2iπz+1
e2iπz−1

− 1
z

= 2iπ
[

1
e2iπz−1

− 1
2iπz

+
1
2

]

= 2iπ
∞

∑
m=1

B2m

(2m) !
(2iπz)2m−1. (11.4.3)

Comparing (11.4.2) and (11.4.3) gives

ζ (2m) =
(−1)m−1

2
(2π)2m

(2m) !
B2m. (11.4.4)

We have seen that ζ vanishes at the negative even integers. The values at the
positive odd integers n, n> 1, are not well understood.

11.5 The function ξ (s)

Riemann introduced a function ξ that is useful in the study of ζ (s) (particularly in
connection with the Riemann hypothesis). It has three important properties:

(i) ξ is an entire function.

(ii) The zeros of ξ are the zeros of ζ that lie in the strip {0 < Res < 1} (the “non-
trivial zeros” of ζ ).
(iii) ξ is symmetric about the line {s : Res= 1

2}, i.e. ξ (s) = ξ (1− s).
Riemann simply wrote down a formula for ξ , but we can guess how he might

have reasoned. First, it is easy to accomplish (i) and (ii). Multiplying ζ by (s− 1)
gets rid of the pole of ζ , and multiplication by Γ ( 12 s+1) = 1

2 sΓ ( 12 s) turns the zeros−2,−4,−6, . . . into removable singularities. Therefore our first guess might be
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ξ0(s) =
s(s−1)

2
Γ

( s
2

)
ζ (s).

Then

ξ0(1− s) =
s(s−1)

2
Γ

(
1
2
− s

2

)
ζ (1− s).

The next step is to look at ξ0 in the context of the functional equation (11.2.5). It
is convenient here to use the reflection formula (10.4.1) and write

sin
(πs
2

)
=

π
Γ

(
s
2

)
Γ

(
1− s

2

) ,
so that (11.2.5) becomes

ζ (s) =
Γ (1− s)(2π)s

Γ
(
s
2

)
Γ

(
1− s

2

)ζ (1− s).

Then there is a cancellation, and

ξ0(s) =
Γ (1− s)(2π)s

Γ
(
1− s

2

) · s(s−1)
2

ζ (1− s)

=
Γ (1− s)(2π)s

Γ
(
1− s

2

)
Γ

(
1
2 − s

2

) ξ0(1− s). (11.5.1)

By Legendre’s duplication formula (10.3.2),

Γ (1− s) = π−1/2 2−sΓ
(
1
2
− s

2

)
Γ

(
1− s

2

)
,

so (11.5.1) simplifies to

ξ0(s) = πs− 1
2 ξ0(1− s)

or, equivalently,
π−s/2 ξ0(s) = π−(1−s)/2 ξ0(1− s).

Thus we take ξ (s) = π−s/2ξ0(s), i.e.

ξ (s) = π−s/2 s(s−1)
2

Γ
( s
2

)
ζ (s). (11.5.2)

Theorem 11.5.1. (Riemann) The function ξ (s) defined by (11.5.2) is entire, and is
symmetric about the line {s : Res= 1/2}:

ξ (1− s) = ξ (s). (11.5.3)

Moreover

ξ (0) = ξ (1) =
1
2
. (11.5.4)
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Proof: The preceding argument established everything except (11.5.4). In view of
the symmetry, we need to only evaluate ξ (0). But (s/2)Γ (s/2)→ 1 as s→ 0, so

ξ (0) =
[
(s−1)π−s/2ζ (s)

]
s=0

= −ζ (0) =
1
2
. � (11.5.5)

Exercises

1. Show that Euler’s product (11.0.2) converges when Res> 1.
2. Show that for Res> 1,

1
ζ (s)

=
∞

∑
n=1

μ(n)
ns

,

where μ is the Möbius function: μ(1) = 1, μ(n) =−1 if n is the product of an
odd number of distinct primes, μ(n) = 1 if n is the product of an even number
of distinct primes, and μ(n) = 0 if n has a repeated prime factor.

3. Show that for Res> 1,
ζ (s)
ζ (2s)

=
∞

∑
n=1

|μ(n)|
ns

.

4. Show that for Res> 1,

[ζ (s)]2 =
∞

∑
n=1

d(n)
ns

,

where d(n) is the number of divisors of n.
5. The prime number theorem implies that for every ε > 0, there are infinitely

many primes greater than (1− ε)x/ logx. Show that the divergence of ∑1/p
already implies the weaker result: for every ε > 0, there are infinitely many
primes greater than x/(logx)1+ε . (Hint: suppose that this expression is bounded,
and estimate ∑1/p for 2n−1 < p< 2n.)

6. Use the trivial inequality

n

∑
k=1

1
k

≤ ∏
p≤n

(
1− 1

p

)−1

to prove an inequality that is half of (11.0.3).
7. Use the (non-trivial) fact that ∑p≤n log p ∼ n as n→ ∞ (see Lemma 13.3.3) to

prove the other half of (11.0.3).
8. Show that for Res> 1,

logζ (s) = ∑
p

∞

∑
n=1

1
n pns

.

9. Compute ζ ′(s)/ζ (s) for Res> 0.
10. Verify that for Res > 1, the portion of the integral (11.2.1) over the circle {z :

|z|= δ} is O(δ ) as δ → 0.
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11. Compute ξ ′(s)/ξ (s) for Res> 1.
12. Show that all the zeros of ξ (s) lie in the open strip {s : 0< Res< 1}.
13. It can be shown that ξ has a factorization

ξ (s) = ξ (0)∏
ρ

(
1− s

ρ

)
,

where the ρ are the zeros of ξ , repeated according to multiplicity and the prod-
uct is taken to be

lim
R→∞ ∏

|ρ |≤R

(
1− s

ρ

)
= ∏

ρ

(
1− s(1− s)

ρ(1−ρ)

)
;

see Section 8.5. Find a formula for ξ ′(s)/ξ (s) that is valid for every s for which
ξ (s) �= 0.

14. For Res> 1, let

L(s) = 1− 1
3s

+
1
5s

− 1
7s

+ . . . .

Show that L extends to an entire function.
15. Show that the function L of the previous problem satisfies the functional equa-

tion

L(1− s) =
(
2
π

)s

π−s sin
(πs
2

)
Γ (s)L(s).

Remarks and further reading

For much more about the zeta function, see Edwards [42], Ivic [72], and Titchmarsh
[135]. See also Chapter 13 and the references there.



Chapter 12
L-functions and primes

Euler used his product expansion of the Riemann zeta function

ζ (s) =
∞

∑
n=1

1
ns

= ∏
p prime

(
1− 1

ps

)−1

, Res> 1

to give an analytic proof that there are infinitely many primes. Dirichlet extended
this result to prove that there are infinitely many primes in arithmetic progressions.

Theorem 12.0.1. (Dirichlet) If k and m are relatively prime integers (i.e. have no
common factors), 0<m< k, then there are infinitely many primes in the arithmetic
progression

m, k+m, 2k+m, 3k+m, . . . . (12.0.1)

Note that if a prime p does not divide k, then dividing k into p leaves a remainder
0 < m < k that is relatively prime to k. It follows that for some remainder m, there
are infinitely many primes p in the progression (12.0.1). Dirichlet’s theorem states
that this is true not just for one such remainder m, but for each relatively prime
remainder mod k. For example, there are infinitely many primes of the form 4n+1
and also infinitely many of the form 4n+3.

This chapter is devoted principally to the proof of Theorem 12.0.1. On the way,
we develop the theory of characters for a finite commutative group. In the last
section and the exercises we take up the question of functional equations for (cer-
tain) L functions, analogous to the functional equation for the zeta function.

A comment on the notation here, in which k is taken to be some fixed number and
m is an index, 1≤m< k. Awkward and unusual as this may seem, it is the standard
convention for this topic.

© Springer Nature Switzerland AG 2020
R. Beals and R. S. C. Wong, Explorations in Complex Functions,
Graduate Texts in Mathematics 287,
https://doi.org/10.1007/978-3-030-54533-8 12

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-60544-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-54533-8_12


168 12 L-functions and primes

12.1 Factorization and Dirichlet characters

Dirichlet’s fundamental observation was that Euler’s product formula could be
extended to series of the form

L(s,χ) =
∞

∑
n=1

χ(n)
ns

(12.1.1)

provided that the function χ : N→ C is bounded and multiplicative:

χ(mn) = χ(m)χ(n), m,n= 1,2,3, . . . . (12.1.2)

These assumptions imply that χ takes values in {0}∪{z : |z| = 1}. By comparison
with ζ , the series L(·,χ) converges for Res> 1. Moreover, it follows from (12.1.2)
and unique factorization of integers that L(·,χ) satisfies the analogue of Euler’s
product formula

L(s,χ) = ∏
p prime

(
1− χ(p)

ps

)−1

. (12.1.3)

The functions χ used in the proof of Theorem 12.0.1 depend on the choice of
the integer k. For convenience we use some standard notation from number theory:
if k and m are positive integers, (m,k) denotes the largest common factor of k and
m. Thus (m,k) = 1 means that there are no non-trivial common factors: m and k are
relatively prime. Integers m,n are said to be equal mod k, written m= n mod k, if k
divides m−n.

A Dirichlet character mod k is a map

χ : N → {0}∪{z : |z|= 1} (12.1.4)

that is multiplicative and has the properties:

χ(n) = χ(m) if n= m mod k; (12.1.5)

χ(n) �= 0 if and only if (n,k) = 1. (12.1.6)

Thus a Dirichlet character is periodic with period k. Moreover it is uniquely deter-
mined by its values on the set of remainders mod k:

Gk = {m : (m,k) = 1, 1≤ m< k}.
The set Gk is a commutative group with respect to the operation of multiplication
mod k. (The existence of an inverse is a counting argument: for fixed m ∈ Gk, the
remainders of mn are distinct as n runs through Gk, so one of these remainders
is 1.) The restriction to Gk of a Dirichlet character χ mod k is a group character in
the standard sense:

χ : Gk → {z : |z|= 1}, χ(mn) = χ(m)χ(n).
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Conversely, a group character on Gk extends uniquely to a Dirichlet character mod
k by using (12.1.5) and (12.1.6) to determine the extension.

12.2 Characters of finite commutative groups

We need some algebraic information that uses no properties that are unique to the
group Gk, so we develop the character theory of an arbitrary finite commutative
group G. We write the composition in G multiplicatively, and denote the identity
element by 1. We denote by Ĝ the set of characters of G. Let |G| denote the order
of G, i.e. the number of elements in G. We assume |G|> 1.

Lemma 12.2.1. If χ1 and χ2 are distinct characters of G, then

∑
g∈G

χ1(g)χ2(g) = 0. (12.2.1)

Proof: Note that χ = χ1χ2 is itself a character. For each h in G,
[

∑
g∈G

χ(g)

]
χ(h) = ∑

g∈G
χ(gh) = ∑

g∈G
χ(g), (12.2.2)

since gh runs throughG as g runs throughG. The identity (12.2.2) implies that either
the sum is zero or χ(h) = 1 for each h:

∑
g∈G

χ(g) =
{|G| if χ ≡ 1;

0 if χ �≡ 1.
(12.2.3)

If χ1 �= χ2, then χ is not identically 1, so (12.2.1) follows from (12.2.3). �

Lemma 12.2.2. Given g �= 1 in G, there is a character χ such that χ(g) �= 1.

Proof: The set of elements 1,g,g2, . . . is a subgroup Hg of G. There is a smallest
positive integer m such that gm = 1. Let ω = e2πi/m, and let χ(gk) = ωk. Then χ is
a character of Hg and χ(g) �= 1. Suppose that χ has been extended to a subgroup H
of G. If H �= G, we shall show that χ can be extended to a larger subgroup; thus, in
finitely many steps χ can be extended to all of G. Suppose that g1 is not in H. There
is some smallest power n such that gn1 is in H. Choose ω1 such that (ω1)n = χ(gn1)
and define

χ(gm1 h) = ωm
1 χ(h), h ∈ H, 1≤ m< n.

Then
χ(gm1 h)χ(gm

′
1 h′) = (ω1)m+m′

χ(hh′)

and it is easily checked in the two cases m+m′ < n and m+m′ ≥ n that the right
side is χ(gm1 hg

m′
1 h′). �
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The set of characters Ĝ is itself a group under the usual operation of multiplica-
tion of functions:

[χ1χ2](gh) = χ1(gh)χ2(gh) = . . . = [χ1χ2](g) · [χ1χ2](h).

We can now identify certain characters of the character group Ĝ. Given g∈G, define

ξg(χ) = χ(g), χ ∈ Ĝ.

This is a homomorphism (i.e. products go to products): check that ξgh = ξgξh.

Lemma 12.2.3. The map g→ ξg from G to the character group of Ĝ is injective. In
particular

|G| ≤ |(Ĝ)̂ |. (12.2.4)

Proof: Suppose that g and h are distinct elements of G. Then gh−1 �= 1, and accord-
ing to Lemma 12.2.2 there is some χ ∈ Ĝ such that

1 �= χ(gh−1) = χ(g)χ(h−1) = ξg(χ) [ξh(χ)]−1,

so ξg �= ξh. �

The next, and very important, step is to construct a certain finite dimensional
inner product space of functions defined on G:

F = {u : u : G→ C}.
This is a complex vector space of dimension |G|. We take as inner product

(u,w) =
1
|G| ∑

g∈G
u(g)w(g).

Proposition 12.2.4. The set of characters Ĝ is an orthonormal basis for F .

Proof: It follows from Lemma 12.2.1 that the Ĝ is an orthonormal set in F . There-
fore the characters are linearly independent. It follows from this fact that

|Ĝ| ≤ |G|.

This is a general inequality for finite commutative groups, so we may apply it to Ĝ
and then use (12.2.4) to conclude that

|G| ≤ |(Ĝ)̂ | ≤ |Ĝ|.

Thus |G|= |Ĝ|, so |Ĝ| equals the dimension of F . Thus Ĝ is a basis forF . �

As we have just noted, |G| = |Ĝ|, so the map g → ξg from G to the character
group of Ĝ is a surjective isomorphism.
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Lemma 12.2.5. If g ∈ G, then

∑
χ∈Ĝ

χ(g) =
{

0 if g �= 1;
|Ĝ| if g= 1.

(12.2.5)

Proof: In light of the preceding remarks, this is (12.2.3), with G replaced by Ĝ and
g replaced by ξg in the character group of Ĝ:

∑
χ∈Ĝ

χ(g) = ∑
χ∈Ĝ

ξg(χ). �

12.3 Analysis of L-functions

We now turn to the analytical part of the proof of Theorem 12.0.1.

The fact that a Dirichlet character mod k is periodic mod k allows us to analyze
the possibility of analytic extension.

Proposition 12.3.1. Suppose that χ : N → C is periodic with period k, and let
L(s,χ) be defined by

L(s,χ) =
∞

∑
n=1

χ(n)
ns

, Res> 1.

Then L(·,χ) has an extension that is holomorphic in the plane, with the possible
exception of a simple pole at s= 1 with residue

k

∑
m=1

χ(m)
k

. (12.3.1)

Proof: Each positive integerN can be written uniquely as nk+m for some 1≤m≤ k,
n≥ 0. Since χ(N) = χ(m), we may regroup the series that defines L(s,χ):

L(s,χ) =
k

∑
j=1

χ( j)φ j,k(s), (12.3.2)

where

φ j,k(s) =
∞

∑
n=0

1
( j+nk)s

. (12.3.3)

As with the earlier discussion of ζ , we use the identity

1
as

=
1

Γ (s)

∫ ∞

0
e−atts−1dt, Rea> 0, Res> 1,

together with uniform convergence, to write
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φ j,k(s) =
1

Γ (s)

∞

∑
n=0

∫ ∞

0
e−( j+nk)t ts−1 dt

=
1

Γ (s)

∫ ∞

0
e− jt

∞

∑
n=0

(e−kt)n ts−1 dt

=
1

Γ (s)

∫ ∞

0

e− jt

1− e−kt t
s−1 dt (12.3.4)

=
1

Γ (s)

[∫ ε

0

e− jt

1− e−kt t
s−1 dt+

∫ ∞

ε

e− jt

1− e−kt t
s−1 dt

]
.

For each ε > 0, the second integral in the last line extends to an entire function of s.
The first integrand, as a function of t, is holomorphic for |kt| < 2π , except for a
simple pole at t = 0 with residue 1/k. Therefore, for each positive ε < 2π/k, and
Res> 1, the first integral has the form

∫ ε

0

{
1
kt

+
∞

∑
n=0

a jk
n t

n

}
ts−1 dt,

and the series is uniformly convergent on the interval [0,ε]. Thus the first integral is

εs−1

k(s−1)
+

∞

∑
n=0

a jk
n εn+s

n+ s
.

This defines a function of s that is meromorphic in the plane. It has a simple pole at
s= 1 with residue 1/k. Poles at the non-positive integers are killed by the multipli-
cation by 1/Γ (s), which vanishes at the non-positive integers. �

We now return to Gk, with the group characters extended to be Dirichlet charac-
ters mod k on N. Let χ1 denote the principal character: χ1 ≡ 1. Thus

L(s,χ1) = ∑
(n,k)=1

1
ns
.

Proposition 12.3.1 and equation (12.2.3) applied to the L(·,χ) give the following.

Proposition 12.3.2. The function L(s,χ) extends to an entire function of s if χ �= χ1.
The function L(s,χ1) extends to a function with one pole, a simple pole at s= 1 with
residue |Gk|/k.

Corollary 12.3.3. (a) The limit

lim
s→1+∑

p

χ(p)
ps

= L(1,χ) (12.3.5)

is +∞ if χ = χ1 is the principal character modm.
(b) If χ �= χ1, then the limit is finite if and only if L(1,χ) �= 0.
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Proof: We know that

L(s,χ) = ∏
p

(
1− χ(p)

ps

)−1

.

Taking the principal branch of the logarithm,

log[L(s,χ)] = −∑
p
log

(
1− χ(p)

ps

)
= ∑

p

χ(p)
ps

+R(χ,s),

where |R(χ,s)|<∑(1/n2) = π2/6, for every Res> 1; see (1.5.2). For the principal
character χ1, we know that L(s,χ1) blows up as s→ 1, so the logarithm blows up,
and we have

∑
(p,k)=1

1
p

= ∞.

(This is not surprising, since this sum differs from the sum over all primes by finitely
many terms, the reciprocals of the prime divisors of k.)

Suppose that χ is not the principal character. Then we know that L(s,χ) has a
finite value at s= 1. If this value is not zero, then the logarithm is finite at s= 1 and
the previous argument shows that ∑ χ(p)/p is finite. �

12.4 Proof of Dirichlet’s Theorem

Part (b) of Corollary 12.3.3 shows the importance of the following.

Theorem 12.4.1. If χ is not the principal character χ1, then L(1,χ) �= 0.

Proof. The first step is to show that there is at most one character χ such that
L(1,χ) = 0. Consider the product

P(s) = ∏
χ∈Ĝk

L(s,χ).

If more than one character vanishes at s= 1, then P(1) = 0. In view of (12.2.5), the
logarithm is

∑
p

[
∑
χ

χ(p)

]
1
ps

+O(1) = |Gk|
[

∑
p≡1 mod k

1
ps

]
+O(1).

This either diverges to +∞ or remains bounded as s→ 1, so P(1) �= 0. This proves
that at most one L(s,χ) vanishes at s= 1.

If χ is a character, so is its complex conjugate, and the corresponding L functions
are conjugates of each other. Since at most one character vanishes at 1, L(1,χ) �= 0
if χ is complex, i.e. takes some complex values.
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Suppose then that χ is a real character. Then χ takes only values ±1. We follow
an argument of de la Vallée Poussin, who introduced the function

ψ(s) =
L(s,χ)L(s,χ1)

L(2s,χ1)

= ∏
(p,k)=1

(1− p−2s)
(1− χ(p)p−s)(1− p−s)

= ∏
(p,k)=1

1+ p−s

1− χ(p)p−s .

Factors with χ(p) =−1 drop out, so

ψ(s) = ∏
χ(p)=1

1+ p−s

1− p−s ∏
χ(p)=0

(1+ p−s)

= ∏
χ(p)=1

(
1+2

∞

∑
n=1

p−sn

)
∏

χ(p)=0

(1+ p−s)

=
∞

∑
n=1

an
ns
, an ≥ 0.

The derivatives ψ(k) alternate sign:

ψ(k)(s) =
∞

∑
n=1

(− logn)k
an
ns
, Res> 1. (12.4.1)

Suppose that L(1,χ) = 0. This kills the pole of L(s,χ1) at s= 1. The product rep-
resentation shows that L(2s,χ1) has no zeros in the half plane Res> 1/2. Therefore
ψ is regular in the open disk centered at s= 2 with radius 3/2. Moreover L(2s,χ1)
has a pole at s=−1/2, so ψ is regular at s= 1/2 and ψ(1/2) = 0. Therefore ψ is
holomorphic in a slightly larger disk centered at s= 2 that contains s= 1/2. Then

ψ
(
1
2

)
=

∞

∑
n=0

ψ(n)(2)
n !

(
1
2
−2

)n

. (12.4.2)

As noted above, the derivatives ψ(n)(2) alternate sign. Therefore the terms in the
series (12.4.2) are non-negative (and not all zero), so ψ(1/2) > 0. We have shown
that the assumption L(1,χ) = 0 leads to a contradiction. �

It follows from Corollary (12.3.3) and Theorem 12.4.1 that

∑p
χ(p)
p

is finite if χ ∈ Ĝk, χ �= χ1; (12.4.3)

∑p
χ1(p)
p

= +∞. (12.4.4)

We are finally in a position to prove Theorem 12.0.1, in the stronger form given by
Dirichlet.
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Theorem 12.4.2. (Dirichlet) If k and m are relatively prime integers, 0 < m < k,
then

∑
p≡m modk

1
p

= ∞. (12.4.5)

Proof: We write (12.4.5) in the equivalent form

∑
p

1m(p)
p

= ∞,

where the function 1m : Z→ R is defined by

1m(n) =
{
1 if n= m,
0 if n �= m,

According to Proposition 12.2.4, we can expand the restriction of 1m to Gk as a
linear combination of characters. This expansion extends, by periodicity, to Z, so

1m = ∑
χ∈Ĝk

a(χ)χ, a(χ) = (1m,χ).

Note that

a(χ1) =
1

|Gk| χ1(m) =
1

|Gk| > 0. (12.4.6)

Then for Res> 1,

∑
p

1m(p)
ps

= ∑
p

∑
χ∈Ĝk

a(χ)χ(p)
ps

= ∑
χ∈Ĝk

a(χ)

[
∑
p

χ(p)
ps

]
.

The desired result (12.4.5) follows from (12.4.3), (12.4.4), and (12.4.6). �

12.5 Functional equations

Like the zeta function, (certain) Dirichlet L-functions satisfy a functional equation
that relates L(s,χ) and L(1− s,χ). In this section we outline a proof of this state-
ment. Many of the details of the argument are left to the exercises.

Fix k. A Dirichlet character χ mod k is periodic with period k on the positive
integers. It can be extended, uniquely, to the negative integers so as to be periodic
on Z: χ(−n) = χ(−n+km) for km> n. Note that a function defined on the integers
and having period k can be considered as a function on Z/(k), the additive group of
integers mod k. We know from the discussion in Section 12.2 that the characters of
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this group are a basis for such functions, and that they are orthonormal with respect
to the inner product

〈 f ,g〉 =
1
k

k−1

∑
n=0

f (n)g(n).

The characters {ωm}km=1 can be defined in terms of α = exp(2πi/k) by

ωm(n) = [ω1(n)]m = αnm.

Indeed

ωm(n1+n2) = αm(n1+n2) = αmn1αmn2 = ωm(n1)ωm(n2),

so ωm is a character of Z/(k). It is easily seen that 〈ωm,ωm〉= 1, while if m1 �= m2

mod k then αm1−m2 �= 1 and

〈ωm1 ,ωm2〉 =
1
k

k−1

∑
n=0

α(m1−m2)n

=
1
k
× α(m1−m2)k−1

α(m1−m2)−1
= 0.

It follows that a Dirichlet character mod k can be written as

χ =
k

∑
m=1

〈χ,ωm〉ωm, (12.5.1)

where

〈χ,ωm〉 = 1
k

k

∑
n=1

χ(n)ωm(n)

=
1
k

k

∑
n=1

χ(n) exp(−2πinm/k)

=
1
k
G(−m,χ).

In general the Gauss sum G(z,χ) is defined by

G(z,χ) =
k

∑
n=1

χ(n)e2πizn/k =
k

∑
n=1

χ(n)αzn.

An important consideration here is that of an induced modulus. Suppose that k̃
is a proper divisor of k and suppose that χ̃ is a Dirichlet character mod k̃. Let χ1 be
the principal character mod k. Then χ = χ̃ χ1 is a Dirichlet character mod k. In fact
χ is clearly multiplicative, and (n,k) = 1 implies (n, k̃) = 1 and χ1(n) = 1, so χ �= 0
if and only if (n,k) = 1.
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The product (12.1.3) associated to a character mod k effectively only involves
primes that do not divide k. Therefore if k̃ is an induced modulus, χ̃ is a Dirichlet
character mod k̃, and χ is the corresponding character mod k, then the products
(12.1.3) for L(s,χ) and L(s, χ̃) differ only by primes that divide k but not k̃:

L(s,χ) = L(s, χ̃) ∏
p|k,(p,̃k)=1

(
1− 1

ps

)−1

.

The product on the right is finite, so all information about the analytic properties of
L(·,χ) is contained in L(·, χ̃).

A character χ mod k is said to be primitive if it has no induced modulus k̃ <
k. An L function for a primitive character satisfies a functional equation that is
analogous to the functional equation for the zeta function. We need some properties
of primitive characters, expressed in terms of the associated Gauss sums G(·,χ).

Lemma 12.5.1. If χ is a Dirichlet character mod k and (n,k) = 1, then

G(n,χ) = χ(n)G(1,χ). (12.5.2)

Proof: If (n,k) = 1, then nm runs through all residues mod k as m runs from 1 to k.
Moreover χ(n)χ(n) = 1. Therefore

G(n,χ) =
k

∑
n=1

χ(m)[χ(n)χ(n)]αnm

= χ(n)
k

∑
m=1

χ(nm)αnm

= χ(n)G(1,χ). �

Proposition 12.5.2. Suppose that χ is a Dirichlet character mod k, and suppose that
there is an n such that (n,k) = q > 0 and G(n,χ) �= 0. Then d = k/q is an induced
modulus.

Proof: Suppose that (a,k) = 1, and suppose that a= 1 mod d: a= 1+rd. In the sum
that defines G(n,χ) we may replace m by am:

G(n,χ) =
k

∑
m=1

χ(am)αnam = χ(a)
k

∑
m=1

χ(m)αnam. (12.5.3)

But
nam
k

=
nm+nmrd

k
=

nm
k

+
nmrd
qd

=
nm
k

+ integer,

since q divides n. Therefore αnam = αnm and the identity (12.5.3) reduces to
G(n,χ) = χ(a)G(n,χ). By assumption, G(n,χ) �= 0, so χ(a) = 1.
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Suppose now that a and b belong to Gk and are equivalent mod d. Then there is
an element a′ ∈Gk such that a′a= 1 mod k. Since d divides k, we also have aa′ = 1
mod d, and therefore ba′ = 1 mod d. Consequently

χ(a)χ(a′) = χ(aa′) = 1 = χ(ba′) = χ(b)χ(a′),

so χ(a) = χ(b).
Suppose that every prime that divides d also divides k. If (m,d)=1 then (m,k)=1,

and we have just shown that χ(m) depends only on the equivalence class of m (mod
d). Thus setting χ̃(m) = χ(m), χ̃ is a character mod d.

Suppose finally that q is the product of the primes that divides k but not d, and
suppose that (m,d) = 1. Let m′ = m+ qd. Then m′ = m mod d and it is easily
checked that (m′,k) = 1. Setting χ̃(m) = χ(m′), we again have a character mod d.
Thus in either case, d is an induced modulus. �

Corollary 12.5.3. If χ is a primitive character mod k, then for each n,

G(n,χ) = χ(n)G(1,χ). (12.5.4)

Proof: If (n,k) = 1 then Lemma 12.5.1 applies. Otherwise, by Proposition 12.5.2,
G(n,χ) = 0= χ(n). �

Proposition 12.5.4. Suppose that χ is a primitive character mod k. Then

G(1,χ)G(1,χ) = kχ(−1). (12.5.5)

Proof: By Proposition 12.5.2,

G(1,χ)G(1,χ) =
k

∑
m=1

G(1,χ)χ(m)αm

=
k

∑
m=1

G(m,χ)αm

=
k

∑
m,n=1

χ(n)αm+mn. (12.5.6)

Now
k

∑
m=1

αm+mn =
k

∑
m=1

(αn+1)m.

The sum of this geometric series is 0 if αn+1 �= 1 and is k if αn+1 = 1. Thus the sum
(12.5.6) collapses to the right side of (12.5.5). �

Theorem 12.5.5. If χ is a primitive Dirichlet character mod k, then the L function
L(s,χ) satisfies the functional equation
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L(1− s,χ) =
1
k

(
k
2π

)s

G(1,χ)Γ (s)L(s,χ)
{
e−πis/2+χ(−1)eπis/2

}
. (12.5.7)

For a different version of the functional equation (12.5.7); see Exercise 10.

The rest of this section presents an outline of the proof of Theorem 12.5.5 due to
Berndt [20]. It follows from (12.3.2) and (12.3.4) that

Γ (s)L(s,χ) =
∫ ∞

0

G(ikx/2π,χ)xs−1

1− e−kx dx; (12.5.8)

see Exercise 11.
Suppose that s> 1 and m is a positive integer. LetCm denote the contour consist-

ing of the semicircle {z : |z| = m+ 1
2 , Rez > 0}, together with the imaginary axis

from−i(m+ 1
2 ) to i(m+ 1

2 ), indented by the semicircle {z : |z|= ε,Rez> 0}, where
ε < 1. Let

F(z) = π e−πiz G(z,χ)
G(1,χ)

1
zs sinπz

.

Then F has simple poles at the integers 1,2, . . . ,m, and

1
2πi

∫
Cm

F(z)dz =
m

∑
n=1

χ(n)n−s; (12.5.9)

see Exercise 11.
There is a uniform bound for z ∈Cm:∣∣∣∣e

−πizG(z,χ)
sinπz

∣∣∣∣ ≤ M, all m; (12.5.10)

see Exercise 11. It follows that, for Res> 0, the integral of F overCm tends to zero
as m→ ∞, so

L(s,χ) =
∫ i∞

iε

G(z,χ)dz
G(1,χ)zs(1− e2πiz)

+
∫ −i∞

−iε

G(z,χ)dz
G(1,χ)zs(1− e−2πiz)

+
1
2πi

∫
Γε
F(z)dz; (12.5.11)

see Exercise 11. The first two integrals on the right in (12.5.11) continue analytically
to all s ∈ C, so (12.5.11) is valid for every s.

Since χ(0) = 0, the third integral on the right in (12.5.11) has limit zero as ε → 0.
Therefore for s< 0,
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L(s,χ) = ie−πis/2
∫ ∞

0

G(iy,χ)dy
G(1,χ)ys (1− e−2πy)

− ieπis/2
∫ ∞

0

e−2πy G(−iy,χ)dy
G(1,χ)ys (1− e−2πy)

= ie−πis/2
(

k
2π

)1−s ∫ ∞

0

G(iky/2π,χ)dy
G(1,χ)ys (1− e−ky)

−ieπis/2
(

k
2π

)1−s ∫ ∞

0

e−kyG(−iky/2π,χ)dy
G(1,χ)ys (1− e−ky)

. (12.5.12)

Replacing m by k−m in the definition of G(z,χ) shows that

e−ky G

(
− iky
2π

,χ
)

= χ(−1)G
(
iky
2π

,χ
)
; (12.5.13)

see Exercise 11. With the use of (12.5.8), (12.5.12) reduces to

L(s,χ) = i

(
k
2π

)1−s

Γ (1− s)L(1− s,χ)

{
e−πis/2− χ(−1)eπis/2

G(1,χ)

}
. (12.5.14)

Replace s with 1− s and use (12.5.5) to convert (12.5.14) to (12.5.7): Exercise 11.

12.6 Other L-functions: algebraic and automorphic

Dirichlet’s L-functions have been generalized or adapted in various directions.
These various L-functions are central to some active areas of current research. In
this section we describe a few examples, borrowed from Iwaniec and Sarnak [71].

As noted in [71], an L-function “is a type of generating function formed out
of local data associated with either an arithmetic-geometric object . . . or with an
automorphic form.” The term local here refers to the “primes” in some number
field, e.g. the ordinary primes in the field Q of rationals. An automorphic form is a
generalization of an automorphic function; see Section 7.8 and Chapter 17 for the
latter.

We have already seen the first two examples; they are automorphic L-functions
of degree 1. The third is an example of an automorphic L-function of degree 2. The
fourth example comes from algebraic-geometric data.

1. The Riemann ζ function:

ζ (s) = ∏
p
(1− p−s)−1 =

∞

∑
n=1

n−s.

2. Dirichlet L-functions:

L(s,χ) = ∏
p
(1− χ(p)p−s)−1 =

∞

∑
n=1

χ(p)p−s.
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3. An automorphic L-function of degree 2:

L(s,F) = ∏
p
(1−λ (p)(Np)−s)−1.

Here p runs through the prime ideals of the field Q(
√−1) with λ (α) = (α/|α|)4,

and Np is the norm of p, while F is a sum over the Gaussian integers:

F(z) = ∑
m,n∈Z

(m+ in)4e2πi(m2+n2)z, z ∈ C+;

F is an automorphic form for a certain subgroup of the modular group (the group
of linear fractional transformations of the upper half plane that have integer coeffi-
cients and determinant 1), specifically the subgroup { fA}with the entry A21 divisible
by 4.

4. L-functions of elliptic curves over the rationals Q:

L(s,E) = ∏
p
Lp(s,E).

Here E refers to a nonsingular curve

y2 = x3+ax+b, (12.6.1)

where a and b are integers. For all but finitely many primes p, the factor Lp is

Lp(s,E) =
(
1− [p−NE(p)]p−s− 1

2 + p−2s
)−1

,

where NE(p) is the number of integer solutions (m,n) mod p of

n3 = m3+am+b mod p.

For the remaining primes the description of Lp is more delicate.

There are many far-reaching conjectures concerning L-functions. One is the gen-
eralized Riemann hypothesis: all the non-trivial zeros of Dirichlet L-functions have
real part 1/2. Formulating other conjectures takes additional context. Quoting [71]
again, referring to two conjectures about the relationship between the two types of
L-functions, algebraic-geometric and automorphic, respectively: “it is expected that
the latter set contains the former one, Shimura-Taniyama for special cases and Lang-
lands in general.” The Shimura–Taniyama conjecture played a key role in Wiles’s
proof of Fermat’s conjecture. The Langlands conjectures are a key part of the far-
reaching “Langlands program.”
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Exercises

1. Suppose that χ : N→ {0}∪{z : |z| = 1} is multiplicative, has period k, and is
not identically zero. Show that χ must have the properties (12.1.5) and (12.1.6).

2. Discuss L(s,χ) for the case k = 2.
3. Suppose that k = 4 and χ(1) =−χ(−1) = 1. Prove that L(1,χ) = π/4.
4. Find all the characters for the groups G10 and G12 of remainders mod 10

and 12.
5. Suppose that H is a subgroup of a finite group G. Define an equivalence relation

in G by g1 ∼ g2 if g−1
1 g2 belongs to H. Show that each equivalence class has the

same number of elements, which shows that the order of H divides the order of
G (Lagrange’s theorem).

6. (a) Suppose that g is an element of a finite groupG. Show that there is a smallest
integer m> 0 such that gm = 1. This is called the order of the element g.

(b) Use Exercise 5 to prove that m divides the order of G.
7. The Hurwitz zeta function ζ (x,s) is defined by

ζ (x,s) =
∞

∑
n=1

1
(n+ x)s

, x> 0, Res> 1.

Derive the integral representation

ζ (x,s) =
1

Γ (s)

∫ ∞

−∞

e−xt

1− e−t t
s−1 dt.

8. Suppose that χ is a Dirichlet character mod k.

(a) Show that

L(s,χ) =
1
ms

k−1

∑
m=1

χ(k)ζ
(
k
m
,s

)
.

(b) Relate this to (12.3.2) and (12.3.3).

The remaining exercises are devoted to primitive Dirichlet characters and the
functional equations for the associated L-functions.

9. Suppose that χ is a Dirichlet character mod k. Show that if χ is not primitive
for k, then there is a unique smallest k̃ with a character that induces χ . This m̃
is called the conductor of χ .

10. The functional equation (12.5.7) is sometimes written in the form

Λ(1− s,χ) =
ia k1/2

G(1,χ)
Λ(s,χ), (12.6.2)

where

Λ(s,χ) =
(π
k

)−(s+a)/2
Γ

(
s+a
2

)
L(s,χ)
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and a = 1
2 [1− χ(−1)]. Use the reflection formula (10.4.1) to derive (12.6.2)

from (12.5.7).
11. Prove the unproved assertions in Section 12.5: (12.5.8), (12.5.9), (12.5.10),

(12.5.11), (12.5.13), (12.5.7).

Remarks and further reading

For much more information on this aspect of analytic number theory, see Apostol
[8], [9], Dou and Zhang [37], Ireland and Rosen [70], and Moreno [100].

In connection with Section 12.6: in addition to Iwaniec and Sarnak [71], see
Arthur [11], Gelbart [48], and Langlands [83].



Chapter 13
The Riemann hypothesis

In his famous paper on the zeta function [120], Riemann remarked that it is likely
that all the non-trivial zeros of the zeta function lie on the line {s : Res = 1

2}. The
“Riemann hypothesis” is the name that has been given to the assertion that this is
the case, i.e. that all non-trivial zeros of ζ have real part 1/2. Determining the truth
of this assertion was one of the problems in Hilbert’s famous list of outstanding
mathematical problems (1900). The problem is still open at the time of this writing.
It has (often) been called the greatest unsolved problem of mathematics. Among the
reasons for this statement are the following:

• The hypothesis is equivalent to the statement about the degree of accuracy of
Gauss’s estimate for π(x), the number of primes ≤ x, as x→ ∞.

• The paper [120] in which Riemann made the statement contains some remark-
able insights and assertions. Some of the assertions were proved only decades
later, and some have not yet been fully verified (or disproven).

• Many leading analysts—Stieltjes, Hadamard, Hardy, Bohr, Landau, Polya, and
Selberg, to name a few—have investigated Riemann’s claims.

• There are close analogues of the hypothesis in other areas of mathematics. Some
have been proved, others are open.

• Many feel that settling the hypothesis will require new methods that will have
wider importance.

In this chapter we prove von Mangoldt’s formula for a function ψ(x) which is
closely related to π(x). This formula leads to a proof of the prime number theorem

π(x) ∼ x
logx

as x→ ∞,

and also to a proof of the equivalence of the Riemann hypothesis and the degree of
accuracy of Gauss’s empirical approximation to π(x). Also included in this chapter
is a brief discussion of Riemann’s 1859 paper. A key tool is the inversion formula
for the Mellin transform, which is proved in the last section.
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13.1 Primes and zeros of the zeta function

The relation of the zeta function to the distribution of prime numbers is encoded in
Euler’s factorization (11.0.2), which we repeat here:

ζ (s) = ∏
p
(1− p−s)−1, Res> 1. (13.1.1)

This factorization shows that ζ has no zeros in the half plane {s : Res> 1}. There-
fore the principal branch of the logarithm of 1/ζ is well defined there. Its derivative
is

− ζ ′(s)
ζ (s)

= ∑
p

d
ds

[log(1− p−s)] = ∑
p

log p
p−s

1− p−s

= ∑
p

∞

∑
n=1

p−ns log p. (13.1.2)

The sum (13.1.2) can be written as a Stieltjes integral (see Section 1.8):

−ζ ′(s)
ζ (s)

=
∫ ∞

0
x−s dψ(x) = s

∫ ∞

0
x−s−1ψ(x)dx, (13.1.3)

for Res> 1, where

ψ(x) =
∞

∑
n=1

∑
pn≤x

log p. (13.1.4)

(The second integral in (13.1.3) converges, since trivially ψ(x)< x logx.)
Riemann’s basic idea was to make use of two factorizations of the zeta func-

tion. One is Euler’s factorization (13.1.1). The second factorization comes from the
relation of ζ to the xi function:

ζ (s) =
2

s(s−1)
1

Γ (s/2)
πs/2 ξ (s). (13.1.5)

In Section 11.5 it was shown that ξ is an entire function that is symmetric about
the line {z : Rez= 1/2}. A consequence is that ξ (ρ) = 0 implies ξ (1−ρ) = 0. As
shown in Section 8.5,

∑
ρ

1
|ρ |2 < ∞. (13.1.6)

(This also follows from the result in Section 13.4.)
As shown in Section 8.5, ξ has a factorization

ξ (s) = ξ (0) ∏
ξ (ρ)=0

(
1− s

ρ

)
, (13.1.7)
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which converges if the factors with ρ and 1−ρ are paired, since

1
s−ρ

+
1

s−1+ρ
=

2s−1
(s−ρ)(s−1+ρ)

= O(|ρ |−2). (13.1.8)

Thus the conditionally convergent product in (13.1.7) is taken to be

lim
N→∞ ∏

|ρ |≤N

(
1− s

ρ

)
.

The factorization (10.1.4) of the gamma function gives

1
Γ (s/2)

=
s
2

∞

∏
n=1

(
1+

s
2n

)(
1+

1
n

)−s/2

. (13.1.9)

Combining (13.1.5) with the factorizations (13.1.7) and (13.1.9), we find

−ζ ′(s)
ζ (s)

=
1

s−1
−∑

ρ

1
s−ρ

−
∞

∑
n=1

[
1

s+2n
− 1

2
log

(
1+

1
n

)]
− 1

2
logπ. (13.1.10)

The estimate (13.1.6) and the identity (13.1.8) show that the sum over ρ in (13.1.10)
converges if ρ and 1−ρ are paired. The summands with respect to n in (13.1.10)
are

1
s+2n

− 1
2

log

(
1+

1
n

)
=

1
s+2n

− 1
2n

+ rn,

=
s

2n(s+2n)
+ rn,

where rn =O(n−2) is independent of s. (Here, and in many other places in this chap-
ter, we use the estimate (1.5.2) for the principal branch of the logarithm.) Therefore
the second sum in (13.1.10) also converges.

The resulting sum for −ζ ′/ζ extends from the half plane {s : Res > 1} to the
entire plane, yielding an entire meromorphic function with simple poles at s = 1,
s = ρ , and the even negative integers. In particular, −ζ ′(0)/ζ (0) is well defined.
Subtracting its representation as a sum from that for ζ ′/ζ , we obtain

− ζ ′(s)
ζ (s)

=
1

s−1
+1−∑

ρ

[
1

s−ρ
+

1
ρ

]
−

∞

∑
n=1

[
1

s+2n
− 1

2n

]
− ζ ′(0)

ζ (0)

=
s

s−1
−∑

ρ

s
ρ(s−ρ)

+
∞

∑
n=1

s
2n(s+2n)

− ζ ′(0)
ζ (0)

. (13.1.11)

This series converges absolutely, apart from the poles at s= 1, s= ρ , and s=−2n,
n= 1,2,3, . . . .
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13.2 von Mangoldt’s formula for ψ

We now have two formulas for the logarithmic derivative −ζ ′/ζ . One is (13.1.3),
which involves the primes via the function

ψ(x) =
∞

∑
n=1

∑
pn≤x

log p.

The other is (13.1.11), which involves the non-trivial zeros of ζ .
The formula (13.1.3) can be written as

−ζ ′(s)
ζ (s)

= s ψ̃(s), (13.2.1)

where
ψ̃(s) =

∫ ∞

0
x−s−1ψ(x)dx.

As noted above,

ψ(x) =
∞

∑
n=1

∑
pn≤x

log p < x logx,

so ψ̃ is well defined and holomorphic for Res> 1. The function ψ̃ would now be
called the Mellin transform of ψ . The function ψ can be recovered from ψ̃ using
the Mellin inversion formula

ψ(x) =
1

2πi

∫ a+i∞

a−i∞

[
− ζ ′(s)
sζ (s)

]
xs ds, a> 1. (13.2.2)

In Section 13.7 we show that the integral (13.2.2) (taken in the sense specified in
that section), recovers ψ(x) at every point of continuity of ψ .

We see that the second formula for ζ ′/ζ , (13.1.11), leads, via (13.2.2), to a for-
mula for ψ:

ψ(x) =
1

2πi

∫ a+i∞

a−i∞

{
1

s−1
−∑

ρ

1
ρ (s−ρ)

+
∞

∑
n=1

1
2n(s+2n)

− ζ ′(0)
ζ (0)s

}
xs ds.

(13.2.3)
Assume for the moment that it is permissible to interchange integration and the
summations. Each of the summands, except the last, has the form −1/b(s−b), and
the last is a constant time 1/s. Thus, term-by-term, we are interested in

1
2πi

∫ a+i∞

a−i∞

xs

(s−b)
ds, Reb≤ 1 < a. (13.2.4)

If 0 ≤ x < 1, the integrand is holomorphic in the half plane to the right of the line
of integration. The integral around the rectangle bounded by the lines Ims = ±h,
Res = a, and Res = a+K is zero. The integral over the upper and lower sides is
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dominated by
1
h

∫ ∞

a
xs ds =

xa

h | logx| ,

and the integral over the right side is dominated by (i.e. less than some constant
times) 2hxK . Thus we may let K → ∞ and conclude that

∣∣∣∣ 1
2π

∫ a+ih

a−ih

xs

s−b
ds

∣∣∣∣ = O(h−1), 0 < x< 1.

Suppose now that x > 1, and consider the integral around a rectangle bounded
by the lines Ims = ±h, Res = −K and Res = a. The integral over the left side is
dominated by 2hx−K for large K. The integrals over the upper and lower boundaries
are each dominated, for large h, by

1
h

∫ ∞

0
e(a−t) logx dt =

xa

h logx
,

independent of K. On the other hand, the value of the full integral around the rectan-
gle is the residue at s= b, which is xb. It follows that the integral (13.2.4) converges
and

1
2πi

∫ a+i∞

a−i∞

xs

(s−b)
ds =

{
0, 0 < x< 1;
xb, x> 1.

(13.2.5)

Formally, then, we have von Mangoldt’s formula

ψ(x) = x−∑
ρ

xρ

ρ
+

∞

∑
n=1

x−2n

2n
− ζ ′(0)

ζ (0)
, x> 1. (13.2.6)

The justification of the interchange of integration and summation that leads from
(13.2.3) to (13.2.6) is taken up in Exercises 9–19.

13.3 The prime number theorem

A key step in the proof of the prime number theorem is to prove that ψ(x) ∼ x as
x→∞, as suggested by the formula (13.2.6). The first step in the proof that ψ(x)∼ x
is to integrate (13.2.6):

∫ x

1
ψ(t)dt =

x2 −1
2

−∑
ρ

xρ+1

ρ(ρ +1)
+O(1)− ζ ′(0)

ζ (0)
(x−1)

=
x2

2
− x2 ∑

ρ

xρ−1

ρ(ρ +1)
+O(x), x> 1. (13.3.1)

Since ∑ρ−2 converges absolutely, and since Re(ρ −1)< 0, the sum in the last line
converges absolutely for each x≥ 1. Moreover each summand has limit 0 as x→ ∞.
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This implies that ∫ x

0
ψ(t)dt ∼ x2

2
as x→ ∞. (13.3.2)

Theorem 13.3.1. As x→ ∞, ψ(x)∼ x.

Proof: According to (13.3.2), given ε > 0, there is an N such that x≥ N implies that

(1− ε)
x2

2
≤

∫ x

0
ψ(t)dt ≤ (1+ ε)

x2

2
.

Then for N ≤ x< y,

∫ y

x
ψ(t)dt ≤ (1+ ε)

y2

2
− (1− ε)

x2

2
=

y2 − x2

2
+ ε

x2 + y2

2
,

and also
∫ y

x
ψ(t)dt ≥ (1− ε)

y2

2
− (1+ ε)

x2

2
=

y2 − x2

2
− ε

x2 + y2

2
.

Since ψ is non-decreasing,

ψ(x) ≤ 1
y− x

∫ y

x
ψ(t)dt ≤ ψ(y),

so

(y− x)ψ(x) ≤ y2 − x2

2
+ ε

x2 + y2

2
;

(y− x)ψ(y) ≥ y2 − x2

2
− ε

x2 + y2

2
.

Take y= αx, α > 1. Then the preceding inequalities take the form

ψ(x)
x

≤ (α +1)
2

+ ε
(α2 +1)
2(α −1)

≤ (α +1)
2

+
εα2

α −1
;

ψ(y)
y

≥ (α +1)
2α

− ε
(α2 +1)

2α(α −1)
≥ (α +1)

2α
− εα2

α −1
.

Given δ > 0, let α = 1+δ . For large x we may take εα2/(α −1) < δ , so that the
preceding inequalities imply that

2+δ
2+2δ

−δ ≤ ψ(x)
x

≤ 2+δ
2

+δ .

Thus ψ(x)/x→ 1. �

The focus of Riemann’s attention was the counting function
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π(x) = ∑
p≤x

1 = the number of primes p less than or equal to x. (13.3.3)

Examining extensive tables of primes led Gauss to the conjecture that the density of
primes near large x was approximately 1/ logx:

π(x) ∼ Li(x) = Li(2)+
∫ x

2

dt
log t

. (13.3.4)

(In general, Li(x), x> 1, is defined as a principal value integral

Li(x) = lim
δ→0+

{∫ 1−δ

0

dt
log t

+
∫ x

1+δ

dt
log t

}
; (13.3.5)

see Exercise 1.)

Lemma 13.3.2. The conjecture (13.3.4) is the same as the conjecture

π(x) ∼ x
logx

. (13.3.6)

Proof: Integrating by parts, for x> 2
∫ x

2

dt
log t

=
x

logx
+

∫ x

2

dt
(log t)2 − 2

log2
.

Now

∫ x

2

dt
(log t)2 =

∫ x1/2

2

dt
(log t)2 +

∫ x

x1/2

dt
(log t)2

<
x1/2

(log2)2 +
4x

(logx)2 ∼ x
logx

· 4
logx

as x→ ∞. Therefore

Li(x) =
x

logx

{
1+O

(
1

logx

)}
. �

It is convenient at this point to introduce a new function. Formally, Gauss’s
approximation suggests that

logxdπ(x) = dx.

Thus the integrated version of (13.3.4) would be

ϑ(x) ≡ ∑
p≤x

log p =
∫ x

0
log t dπ(t) ∼ x. (13.3.7)

The next step in proving (13.3.4) is to prove (13.3.7).
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Lemma 13.3.3. As x→ ∞, ϑ(x)∼ x.

Proof: Let us relate ϑ to ψ , whose asymptotic behavior we know. Clearly

ϑ(x) ≤ ψ(x) =
∞

∑
n=1

∑
pn≤x

log p.

On the other hand

ψ(x) = ϑ(x)+ϑ(x1/2)+ϑ(x1/3)+ · · ·+ϑ(x1/n),

where x1/(n+1) < 2. Thus the number of summands is less than logx/ log2, so

ϑ(x) ≤ ψ(x) ≤ ϑ(x)+
logx
log2

ϑ(x1/2). (13.3.8)

Since ψ(x)∼ x,
ϑ(x) ≤ ψ(x) ≤ ϑ(x)+O(x1/2 logx), (13.3.9)

which implies ϑ(x)∼ x. �

Now

ϑ(x) =
∫ x

0
log t dπ(t) = π(x) logx−

∫ x

0

π(t)
t

dt.

But π(t)/t is bounded and π is non-decreasing, so

∫ x

0

π(t)
t

dt =
∫ s

0

π(t)
t

dt+
∫ x

s

π(t)
t

dt ≤ O(s)+π(x) log
(x
s

)
.

Taking s= x/ logx gives

ϑ(x) = π(x) logx+O(x/ logx)+π(x)O(log logx).

Combining this with Lemma 13.3.3, we obtain the prime number theorem.

Theorem 13.3.4. (Prime Number Theorem) As x→ ∞,

π(x) ∼ x
logx

.

13.4 Density of the zeros

A key ingredient in the detailed analysis of the relationship between the zeros ρ and
the accuracy of Gauss’s estimate for π(s) is more information about the distribution
of the ρ . Riemann stated a very precise estimate of the density of the zeros ρ of
the zeta function. A weaker result was proved by von Mangoldt [96] nearly a half
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Re s = 0 Re s = 1 Re s = 2

i(T + 1) 2 + i(T + 1)

iT 2 + iT

ρ θ

Fig. 13.1 Change in argument of s−ρ

century later. Note that because of the pairing ρ ↔ 1−ρ , it is enough to consider
the density for Imρ > 0.

Theorem 13.4.1. (von Mangoldt) The asymptotic density of the zeros ρ of ξ is at
most 2logx, in the sense that for T ≥ T0, the number of roots ρ such that T ≤ Imρ ≤
T +1 is at most 2logT .

Proof: The proof involves integrating ξ ′/ξ from 2+ iT to 2+ i(T + 1). According
to (13.1.7), the integrand is the series

∑
ρ

d
ds

log

(
1− s

ρ

)
= ∑

ρ

1
s−ρ

,

which is conditionally convergent: see (13.1.8). Integrating a single term gives the
change in log(s−ρ) from s= 2+ iT to s= 2+ i(T +1). The imaginary part is the
change in angle, and is always positive. If T ≤ Imρ ≤ T +1, then, since Reρ > 0,
this change of angle is at least tan−1(1/2); see Figure 13.1.

Therefore if there are n(T ) zeros with imaginary part between T and T +1,

n(T ) tan−1(1/2) ≤ Im

{∫ 2+i(T+1)

2+iT

ξ ′(s)
ξ (s)

ds

}
(13.4.1)

= Im

{
log

ξ (2+ i[T +1])
ξ (2+ iT )

}
. (13.4.2)

According to the definition (13.1.5),

logξ (s) = logΓ
(

1
2
s

)
+ logs+ log(1− s)

− log2− s
2

logπ + logζ (s), (13.4.3)

so letting S= 2+ iT we have |S| → ∞ as T → ∞, and
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log
ξ (2+ i[T +1])

ξ (2+ iT )
= logξ (S+ i)− logξ (S)

= logΓ
(

1
2
(S+ i)

)
− logΓ

(
1
2
S

)
+ log

S+ i
S

+ log
1−S− i

1−S

− i
2

logπ + log
ζ (S+ i)

ζ (S)

= logΓ
(

1
2
(S+ i)

)
− logΓ

(
1
2
S

)
+ log

(
1+

i
S

)
+ log

(
1−S− i

1−S

)

− i
2

logπ + log
ζ (S+ i)

ζ (S)

= logΓ
(

1
2
(S+ i)

)
− logΓ

(
1
2
S

)
+ log

ζ (S+ i)
ζ (S)

+O(1).

Now |1/pS|= |1/pS+i|= 1/p2, so the product formula (13.1.1) shows that

log
ζ (S+ i)

ζ (S)
= ∑

p

[
log

(
1− 1

pS

)
− log

(
1− 1

pS+i

)]
= O

(
∑
p

1
p2

)
= O(1).

Finally, the estimate (10.5.8) gives

logΓ
(
(S+ i)

2

)
− logΓ

(
S
2

)

∼ 1
2

[
(S+ i−1) log

S+ i
2

− (S+ i)− (S−1) log
S
2
+S

]

∼ S−1
2

log

(
1+

i
S

)
+

i
2

log

(
1
2
[S+ i]

)

∼ i
2

log(S+ i) ∼ i
2

logT.

It follows from this and from (13.4.2) that the number of zeros with imaginary part
between T and T +1 is less than

1
2tan−1(1/2)

logT +O(1) ≤ 2logT

as T → ∞. �

The density estimate leads to another proof of convergence of ∑(1/|ρ |2). The
number of roots ρ with |ρ | ∼ n2 is dominated, for large n, by a multiple of logn , so
the sum ∑ |ρ |−2 is dominated by a multiple of ∑ logn/n2.
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13.5 The Riemann hypothesis and Gauss’s approximation

How accurate can the approximation (13.3.4) be? Taken together, the two theorems
in this section show that the Riemann hypothesis is equivalent to a certain degree of
accuracy of Gauss’s estimate (13.3.4).

Theorem 13.5.1. Suppose that for each ε > 0,

π(x) = Li(x)+O(x
1
2+ε) as x→ ∞. (13.5.1)

Then the Riemann hypothesis is true: all non-trivial zeros of the zeta function lie on
the line {s : Res= 1

2}.

We begin with a lemma relating this estimate to an estimate for ψ .

Lemma 13.5.2. Suppose that (13.5.1) is true for each ε > 0. Then for each ε > 0,

ψ(x)− x = O(x
1
2+ε) as x→ ∞. (13.5.2)

Proof: In view of the estimate (13.3.9) it is enough to prove that

ϑ(x)− x = O(x
1
2+ε) as x→ ∞. (13.5.3)

Now dx= logxdLi(x), so given a> 1,

ϑ(x)− x =
∫ x

a
log t d[π(t)−Li(t)]− [ϑ(a)−a]

= logx [π(x)−Li(x)]−
∫ x

a

π(t)−Li(t)
t

dt− [ϑ(a)−a].

Given ε > 0, the constant a can be chosen so that x≥ a implies

|π(x)−Li(x)| ≤ x
1
2+2ε ,

so

|ϑ(x)− x| ≤ x
1
2+2ε logx+

∫ x

a
t−

1
2+2ε dt+ constant

≤ x
1
2+3ε

for large x. �

Proof of Theorem 13.5.1. The function −(1− s)ζ (s) is entire. By (13.1.3), its loga-
rithmic derivative is
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1
s−1

+
ζ ′(s)
ζ (s)

=
1

s−1
− s

∫ ∞

1
ψ(x)x−s−1 dx

=
∫ ∞

1
x−s dx− s

∫ ∞

1
ψ(x)x−s−1 dx

= −1+ s
∫ ∞

1
[x−ψ(x)]x−s−1 dx. (13.5.4)

Assume (13.5.1). By Lemma 13.5.2,

x−ψ(x) = O(x
1
2+ε),

so the integral in the last line of (13.5.4) converges in the half plane {s : Res >
1
2 +ε}. This shows that the derivative of the logarithm of (s−1)ζ (s) is holomorphic
in this half plane, so ζ (s) has no zeros in this half plane. We know that the set of
non-trivial zeros of ζ is symmetric about the line Res = 1/2, so there are also no
zeros in the strip {0 < Res< 1/2− ε}. By assumption this is true for every ε > 0.
Thus the assumption (13.5.1) implies the Riemann hypothesis. �

The converse of this theorem, proved by von Koch [78], is deeper. It relies on the
full strength of results of the preceding sections.

Theorem 13.5.3. (von Koch) If the non-trivial zeros of the zeta function all lie on
the line {s : Res= 1

2}, then

π(x)−Li(x) = O(x1/2 logx). (13.5.5)

Proof: We start with the estimate

ψ(x) ≤
∫ x+1

x
ψ(t)dt =

∫ x+1

0
ψ(t)dt−

∫ x

0
ψ(t)dt

=
(x+1)2 − x2

2
−∑

ρ

(x+1)ρ+1 − xρ+1

ρ(ρ +1)
+O(1)

≤ x+∑
ρ

∣∣∣∣ (x+1)ρ+1 − xρ+1

ρ(ρ +1)

∣∣∣∣+O(1). (13.5.6)

Similarly

ψ(x) ≥
∫ x

x−1
ψ(t)dt

≥ x−∑
ρ

∣∣∣∣x
ρ+1 − (x−1)ρ+1

ρ(ρ +1)

∣∣∣∣+O(1). (13.5.7)

Suppose that each ρ has real part 1
2 . Then |xρ |= x1/2, so for x≥ 1,

∣∣∣∣ (x+1)ρ+1 − xρ+1

ρ(ρ +1)

∣∣∣∣ ≤ 2(x+1)3/2

ρ(ρ +1)
≤ 2(2x)3/2

γ2 , γ = Imρ. (13.5.8)
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We also want the estimate, for x≥ 1,
∣∣∣∣ (x+1)ρ+1 − xρ+1

ρ(ρ +1)

∣∣∣∣ =
∣∣∣∣
∫ x+1

x

tρ

ρ
dt

∣∣∣∣ ≤ (2x)1/2

|γ | , γ = Imρ, (13.5.9)

which is stronger than (13.5.8) for x> |γ |.
Suppose now that x is larger than the constant T0 of Theorem 13.4.1. Combining

the estimates (13.5.6), (13.5.8), and (13.5.9), and continuing to denote Imρ by γ ,
we have

ψ(x) ≤ x+(2x)1/2 ∑
|γ |<T0

1
|γ | +(2x)1/2 ∑

T0≤|γ |<x

1
|γ | +2(2x)3/2 ∑

|γ |≥x

1
γ2 .

The first sum is a constant multiple of x1/2. Theorem 13.4.1 shows that the second
and third sums are dominated by

∫ x

T0

log t
t

dt+
∫ ∞

x

log t
t2

dt =
1
2

[
(logx)2 − (logT0)2]+ logx

x
+

1
x
.

It follows from these estimates and (13.5.6), (13.5.7) that

ψ(x) = x+O
(
x1/2(logx)2

)
.

Then (13.3.9) gives the same estimate for ϑ :

ϑ(x) = x+O
(
x1/2(logx)2

)
. (13.5.10)

Now dϑ = logxdπ so (13.5.10) implies that

π(x)−Li(x)+Li(2) =
∫ x

2

1
log t

d(ϑ(t)− t)

=
1

logx
[ϑ(x)− x]+

∫ x

2
[ϑ(t)− t]

dt
t(log t)2 .

In view of (13.5.10), the first summand on the right is O(x1/2 logx) and the integrand
in the second summand is O(t−1/2), so

π(x)−Li(x) = O(x1/2 logx). �

13.6 Riemann’s 1859 paper

In this section we outline Riemann’s work on this subject, but with updated and
modified notation. Riemann works with Π(s) = Γ (s+1) and denotes the counting
function π(x) by F(x), for example.
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Riemann begins by noting Euler’s factorization (13.1.1). He derives the equation
(11.2.4) in order to extend ζ , noting that the extension has a single, simple, pole at
s= 1. He uses this formula to derive the functional equation (11.2.5). He introduces
the function

σ(s) = Γ
( s

2

)
π−s/2 ζ (s) (13.6.1)

and notes that this function is unchanged under s → 1− s. He then proceeds to a
second representation of σ in terms of a theta function. Specifically he sets

θ(x) =
∞

∑
n=1

e−n2πx

and shows that
σ(s) =

∫ ∞

0
θ(x)xs/2−1 dx; (13.6.2)

see Exercise 4. He uses Jacobi’s identity

∞

∑
−∞

e−n2πx = 1+2θ(x) = x−1/2
[

1+2θ
(

1
x

)]
(13.6.3)

to derive the equation

σ(s) =
∫ ∞

1
θ(x)xs/2−1 dx+

∫ 1

0
θ

(
1
x

)
x(s−3)/2 dx

+
1
2

∫ 1

0

(
x(s−3)/2 − xs/2−1

)
dx

=
1

s(s−1)
+

∫ ∞

1
θ(x)

(
xs/2−1 + x−(1+s)/2

)
dx.

(Jacobi’s identity (13.6.3) follows from the Poisson summation formula. See Exer-
cises 17–19 of Chapter 18.)

Riemann then introduces the function ξ , so that the previous equation becomes

ξ
(

1
2
+ it

)
=

1
2
−

(
t2 +

1
4

)∫ ∞

1
θ(x)x−3/4 cos

( t
2

logx
)
dx

= 4
∫ ∞

1

d
dx

{
x3/2 θ ′(x)

}
x−1/4 cos

( t
2

logx
)
dx, (13.6.4)

and notes that ξ ( 1
2 + it) is entire, and all zeros have |Im t| ≤ 1

2 . He also states that
the number of zeros ρ with Imρ between 0 and T is approximately

T
2π

log
T
2π

− T
2π

,

and it is very likely (“es ist sehr warscheinlich”) that all the zeros ρ have real part
1/2.
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At this point Riemann makes a statement that is equivalent to the factorization
(13.1.7)

ξ (s) = ξ (0)∏
ρ

(
1− s

ρ

)
,

an assertion that was first proved by Hadamard more than 30 years later, see Sec-
tion 8.5.

Riemann now introduces the counting function, denoted here by π , and a related
function

J(x) =
∞

∑
n=1

∑
pn≤x

1
n

= π(x)+ 1
2 π(x1/2)+ 1

3 π(x1/3)+ 1
4 π(x1/4)+ . . . ,

and derives the identity

logζ (s)
s

=
∫ ∞

0
J(x)x−s−1 dx,

which is equivalent to (13.1.3). Riemann identifies this Mellin transform as being
equivalent to a Fourier transform and inverts it, half a century before Mellin’s paper.
The result is

J(x) =
1

2πi

∫ a+i∞

a−i∞

logζ (s)
s

xs ds.

Riemann inserts into this formula the representation of logζ that corresponds to
the formula (13.1.10). After a page of manipulations, he arrives at a formula

J(x) = Li(x)− ∑
Imρ>0

[
Li(xρ)+Li(x1−ρ)

]

+
∫ ∞

x

1
x2 −1

· dx
x logx

+ logξ
(

1
2

)
, (13.6.5)

where the ρ,1− ρ are the non-trivial zeros of ζ . This formula is the analogue of
(13.2.6). It was proved by von Mangoldt [96] some forty years after Riemann’s
work.

13.7 Inverting the Mellin transform of ψ

Recall that the non-negative function ψ vanishes for 0 ≤ x < 2 and satisfies the
trivial estimate ψ(x)≤ x logx. Therefore the Mellin transform

ψ̃(s) =
∫ ∞

0
ψ(x)x−s−1 ds

is holomorphic for Res> 1, and is bounded on each line Res= a, a> 1. We claim
that at each point of continuity x of ψ ,
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ψ(x) =
1

2πi

∫ a+i∞

a−i∞
ψ̃(s)xs ds

=
1

2π

∫ ∞

−∞
ψ̃(a+ it)xa+it dt. (13.7.1)

The meaning of the integral is not clear, based simply on the boundedness of ψ̃ . We
define it by introducing a convergence factor, and taking the integral to be the limit:

lim
ε→0+

{
1

2π

∫ ∞

−∞
e−ε |t|ψ̃(a+ it)xa+it dt

}
. (13.7.2)

Our objective is to show that this limit exists and equals ψ(x) at each point of con-
tinuity of ψ . The convergence factor allows a change in the order of integration:

1
2π

∫ ∞

−∞
e−ε |t|ψ̃(a+ it)xa+it dt

=
1

2π

∫ ∞

−∞
e−ε |t|xa+it

{∫ ∞

0
ψ(y)y−a−it−1 dy

}
dt

=
1

2π

∫ ∞

0
ψ(y)

(
x
y

)a
{∫ ∞

−∞
e−ε |t|

(
x
y

)it

dt

}
dy
y
. (13.7.3)

Let x/y= e−εu. Then the inner integral in the last line is
∫ ∞

−∞
e−ε |t|−iεtu dt =

∫ ∞

0

[
e−εt(1−iu) + e−εt(1+iu)

]
dt

=
1

ε(1− iu)
+

1
ε(1+ iu)

=
2

ε(1+u2)
.

Since y= xeεu, it follows that (13.7.3) is

1
π

∫ ∞

0
ψ(xeεu)e−εau du

1+u2 . (13.7.4)

Now
1
π

∫ ∞

−∞

du
1+u2 = 1,

(Exercise 6), so it follows from (13.7.4) that the limit (13.7.2) is ψ(x) wherever ψ
is continuous, Exercise 7.

Exercises

1. Prove that the limit (13.3.5) exists.
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2. Suppose that for each ε > 0, |π(x)−Li(x)| ≤ xα+ε for any sufficiently large x,
where 1

2 < α < 1. Prove that all non-trivial zeros of ζ are in the strip 1−α ≤
Res≤ α .

3. Suppose that all the non-trivial zeros of ζ lie in the strip 1−α ≤ Res ≤ α ,
where 1

2 < α < 1. Prove that |π(x)−Li(x)|= O(xα+ε).
4. Use the integral form of the gamma function and write ζ as a sum to derive

(13.6.2).
5. Use Jacobi’s identity (13.6.3) to derive (13.6.4).
6. Use the residue calculus to prove that

∫ ∞
−∞(1+ s2)−1 = π .

7. Assuming that ψ is continuous at x, fill in the details in the assertion that the
limit (13.7.1) is ψ(x).

8. Suppose that ψ has a jump discontinuity at x. Prove that

1
2πi

∫ a+i∞

a−i∞
ψ̃(s)xs ds =

1
2

[
lim

ε→0+
ψ(x+ ε)− lim

ε→0+
ψ(x− ε)

]
.

9. This is the first in a series of exercises that justify the interchange of summation
and integration in the proof of von Mangoldt’s formula (13.2.6).

Recall that if ρ is a zero of ξ then so is 1−ρ , so that in estimating sums it is
enough to sum over Imρ ≥ 0.

Show that the two series in (13.1.11) converge uniformly on bounded intervals
of the line {s : Res= a> 1}, so that the resulting expression for

− 1
2πi

∫ a+ih

a−ih

ζ ′(s)
sζ (s)

xs ds

can be integrated term-by-term.
10. Show that for each x> 0, a> 0, h> 0,

∣∣∣∣
∫ a+ih

a−ih

xs

s
ds

∣∣∣∣ ≤ 4xa

a logx
.

(Hint: xs = (1/ logx)d(xs)/ds, integrate by parts.)
11. Use Exercise 10 to prove

∣∣∣∣
∫ a+ih

a−ih

xs

s+2n
ds

∣∣∣∣ ≤ 2xa

n logx
.

12. Use Exercises 9 and 11 to show that

1
2πi

lim
h→∞

∫ a+ih

a−ih

∞

∑
n=1

xs

2n(2n+ s)
ds =

∞

∑
n=1

x−2n

2n

for x> 1, and the limit is 0 for 0 < x< 1.
13. Suppose a> 0 and 0 < b< h. Show that
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∣∣∣∣
∫ a+ih

a+ib

xs

s
ds

∣∣∣∣ ≤ K
xa

logx
· 1
a+b

.

(K can be taken to be 4
√

2.)
14. Suppose that a > 1 and that ρ = σ + iτ is a zero of ξ with τ > h > 0. Use the

identity ∫ a+ih

a−ih

xs

s−ρ
ds = xρ

∫ a−ρ+ih

a−ρ−ih

xt

t
dt

and Exercise 13 to prove that
∣∣∣∣
∫ a+ih

a−ih

xs

s−ρ

∣∣∣∣ ≤ K
xa

logx
· 1
c+ τ −h

,

where c= a−σ > a−1 > 0.
15. Assume that h> T0, the constant in Theorem 13.4.1. Deduce from Exercise 14

that the sum

∑
|Imρ |>h

∣∣∣∣
∫ a+ih

a−ih

xs

ρ(s−ρ)
ds

∣∣∣∣
is dominated by

xa

logx

∫ ∞

h

logτ
τ(τ −h+ c)

dτ =
xa

logx

∫ ∞

0

log(t+h)
(t+h)(t+ c)

dt

≤ xa

logx

∫ ∞

0

1

(t+h)1/2 (t+ c)
dt

≤ xa

logx

∫ ∞

0

1

h1/4 t1/4 (t+ c)
dt

and conclude that this sum converges to zero as h→ ∞.
16. Use the argument that leads to (13.2.5) to show that

∣∣∣∣ 1
2πi

∫ a+ih

a−ih

xs

s
ds−1

∣∣∣∣ ≤ xa

πh logx
.

17. Suppose that ρ = σ + iτ , τ > 0, is a zero of ξ .

(a) Show that

1
2πi

∫ a+ih

a−ih

xs

ρ(s−ρ)
ds− xρ

ρ
=

xρ

ρ

{
1

2πi

∫ a−ρ+ih

a−ρ−ih

xt

t
dt−1

}

and, setting c= a−σ > 1/2,

1
2πi

∫ a−ρ+ih

a−ρ−ih

xt

t
dt−1 =

{
1

2πi

∫ c+i(h+τ)

c−i(h+τ)

xt

t
dt−1

}
− 1

2πi

∫ c+i(τ+h)

c+i(h−τ)

xt

t
dt.

(b) Use Exercise 15 to show that the first expression on the right in the last line
of part (a) is dominated by



13.7 Inverting the Mellin transform of ψ 203

xa−σ

h logx
.

(c) Use Exercise 13 to show that the second expression on the right in the last
line of part (a) is dominated by

xa−σ

(c+h− τ) logx
.

18. Use Exercises 16 and 17 to show that, for c= a−1 > 0,

∑
0<|Imρ |≤h

{
1

2πi

∫ a+ih

a−ih

xρ

ρ(s−ρ)
ds− xρ

ρ

}

= ∑
0<|Imρ |≤h

xρ

ρ
1

2πi

∫ a+ih

a−ih

{
xρ

ρ(s−ρ)
ds−1

}

is dominated by

xa

logx ∑
0≤Imρ≤h

{
1

Imρ(h+ Imρ)
+

1
Imρ(c+h)

}
. (13.7.5)

19. In view of Exercises 9, 12, and 15, we can complete the proof of von Mangoldt’s
formula (13.2.6), by showing that (13.7.5) has limit zero as h→ ∞. Individual
summands have limit zero, so we may ignore the terms with Imρ < T0, the
constant in Theorem 13.4.1, and estimate the remaining sums by

∫ h

T0

logτ
τ(τ +h)

dτ +
∫ h

T0

logτ
τ(c+h− τ)

dτ.

Use the identities

1
τ(h+ τ)

=
1
h

(
1
τ
− 1

h+ τ

)
;

1
τ(c+h− τ)

=
1

c+h

(
1
τ
− 1

c+h− τ

)

to show that both integrals are dominated by (logh)2/h.

Remarks and further reading

The book by Edwards [42] contains an extensive discussion, with proofs, of Rie-
mann’s paper, von Mangoldt’s proof of Riemann’s formula, and subsequent devel-
opments, including the proofs by Hadamard [56] and de la Vallée Poussin [35] of
the prime number theorem, as well as methods of computing and locating zeros of
ζ . The book edited by Borwein et al. [27] contains a wealth of related material,
including essays by experts and reprintings of many of the important papers in the
subject.
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There have been many proofs of the prime number theorem since those of
Hadamard and de la Vallée Poussin, whose papers are among those that are included
in [27]. Proofs that are “elementary,” in the sense of not using complex variables,
were found by Selberg and by Erdős. The Erdős and Selberg papers, as well as a
short proof of Newman [107] that does use complex analysis, are also included in
[27]. For Newman’s proof, see also the exposition by Zagier [147].



Chapter 14
Elliptic functions and theta functions

The trigonometric functions are the basic functions that are periodic with respect
to a translation of the plane C. An important class of complex functions is doubly
periodic: periodic with respect to two sets of translations. This chapter presents the
general theory of such functions, and Jacobi’s construction via theta functions. The
following two chapters, which are independent of each other, present constructions
due to Jacobi and to Weierstrass, respectively.

Elliptic functions play, and have played, a key role in many developments in
number theory and algebraic geometry; see the references at the end of the chapter.

14.1 Elliptic functions: generalities

In this section we define elliptic functions and deduce some basic properties. In the
next section, we show that non-constant elliptic functions actually exist.

An elliptic function is a meromorphic function f , defined on all of C, that is
doubly periodic: there are non-zero constants 2ω1, 2ω2 in C such that ω2/ω1 is not
real, and

f (u+2ω1) = f (u) = f (u+2ω2).

The numbers 2ω1, 2ω2 are the periods of f . (The reason for the factor 2 is that the
half-periods ω1, ω2 play a significant role, see Propositions 14.1.4 and 14.1.5.)

The period lattice generated by ω1 and ω2 is the set

Λ = Λ(2ω1,2ω2) = {p : p= 2mω1 +2nω2, m,n= 0,±1,±2, . . .}.
Each p ∈ Λ is also a period: f (u+ p) = f (u). Note that other choices of periods
can generate the same lattice, and therefore the same class of elliptic functions, for
example,

ω ′
1 = ω1 +ω2, ω ′

2 = ω2 (14.1.1)
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0
ω1

2ω1
ω2

2ω2
ω1 + ω2

2ω1 + 2ω2

Fig. 14.1 Period parallelogram

or
ω ′

1 = −ω2, ω ′
2 = ω1 +ω2. (14.1.2)

Usually it is assumed that the generators 2ω j are numbered so that

Im
ω2

ω1
> 0. (14.1.3)

The changes (14.1.1) and (14.1.2) preserve the condition (14.1.3).

An elliptic function f is completely known once we know it on any period par-
allelogram Πa:

Πa = Πa(2ω1,2ω2) = {u : u= a+2sω1 +2tω2, 0 ≤ s, t < 1};

see Figure 14.1 for Π0. In what follows we shall often tacitly choose a so that f has
no zeros or poles on the boundary ∂Πa of Πa. We write Π for Π0. The collection

{
Πp : p ∈ Λ

}
(14.1.4)

is a covering of C by disjoint sets.

Proposition 14.1.1. The set of elliptic functions with a given period lattice is closed
under addition, multiplication, and division (by a function that is not identically
zero). Each non-constant elliptic function has poles and is determined up to a mul-
tiplicative constant by its zeros and poles, counted according to multiplicity.

Proof: The set of meromorphic functions is closed under these operations, and peri-
odicity is clearly preserved. If two such functions f and g have the same zeros and
poles, then the quotient f/g is an entire function. Periodicity implies that f/g has
the same values on each set of the cover (14.1.4), so f/g is bounded. By Liouville’s
theorem, Theorem 1.2.7, f/g is constant. �
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Remark. The first appearance of Liouville’s theorem seems to have been in Liou-
ville’s treatment of elliptic functions. He used it as it was used here, to show that an
entire elliptic function is constant.

Proposition 14.1.2. A non-constant elliptic function f has at least two poles, count-
ing multiplicity, in each period parallelogram. Moreover, f takes each (finite or
infinite) value the same number of times in each period parallelogram.

Proof: As noted above, if f is not constant, then it cannot be entire. Therefore f has
at least one pole in each Πa. The sum of the residues, counting multiplicity, is

1
2πi

∫

Γ
f (u)du,

where Γ is the boundary ∂Πa, oriented in the usual way. Because of periodicity,
integrals over opposite sides cancel, so the integral is zero. Therefore either there is
a multiple pole, or else several simple poles, the sum of whose residues is zero.

The integral
1

2πi

∫

Γ

f ′(u)
f (u)

du

counts the number of zeros minus the number of poles in the parallelogram. This
integral is also zero, so the number of zeros equals the number of poles. This argu-
ment, applied to f (u)−b, shows that f takes the value b the same number of times,
as well. (This number is called the order of f .) This number is independent of the
base point a of the period parallelogram, since it depends continuously on a, but is
an integer. �

Another integration over the boundary of Πa shows that not only are the zeros
and poles equal in number, but there is a constraint on how they are positioned.

Proposition 14.1.3. Suppose that f is an elliptic function whose zeros and poles
in the period parallelogram Π , counting multiplicity, are a1, . . . ,ak and b1, . . . ,bk,
respectively. Then

p = (a1 +a2 + · · ·+ak)− (b1 +b2 + · · ·+bk) (14.1.5)

belongs to Λ .

Proof: Assume first that there are no zeros or poles on the boundary Γ of Π . The
right side of (14.1.5) is equal to

1
2πi

∫

Γ
z
f ′(z)
f (z)

dz =
1

2πi

[
−2ω2

∫ 2ω1

0

f ′(z)
f (z)

dz+2ω1

∫ 2ω2

0

f ′(z)
f (z)

dz

]
.

The integrals on the right are equal to i times the change in the argument of f (z)
as z goes from 0 to 2ω1 or 2ω2. Since f returns to its initial value at each of these
points, the change in the argument is an integral multiple mj of 2π . Therefore
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p = 2m1ω1 −2m2ω2 ∈ Λ . (14.1.6)

If there are zeros or poles on the boundary, we may shift slightly, replacing the
endpoints by ε,2ω j+ ε . �

According to Proposition 14.1.2, the simplest possibility for a non-constant ellip-
tic function f is that it has order two: either two simple poles whose residues have
opposite signs, or one double pole. We could add to the simplicity by asking that f
be symmetric about its pole(s): odd, in the case of simple poles, or even, in the case
of a double pole. We may assume, also, that the double pole, or one of the simple
poles, is at the origin.

Proposition 14.1.4. Suppose that f is an odd elliptic function of order 2 with peri-
ods 2ω1, 2ω2, and a pole at the origin. Then the zeros and poles of f are simple.
The zeros and the other poles in the period parallelogram Π are located at the half-
periods {ω1,ω2,ω3}, where ω3 = ω1 +ω2. Moreover, f is odd around each of the
points ω j .

Proof: We start with the elementary observation that if g is odd and has period 2ω ,
then g is also odd around ω:

g(ω −u) = −g(ω +u).

See Exercise 3. It follows that f is odd around each of the points ω1, ω2, ω3. There-
fore each is a zero or pole of f ; see Exercise 4. Since f is assumed to have order
2, it has two poles and two zeros, counting multiplicity, so the zeros and the other
poles take up the three half-periods ω j. �

Remark. Given the distribution of the zeros and other poles among the half-periods
ω j, the function f in Proposition 14.1.4 can be normalized by choosing the residue
at the origin or the derivative at one of the zeros.

For the second possibility, an even elliptic function of order 2 with a double pole
at the origin, one can always add a constant. The location of the two zeros (or double
zero) in Π depends on that constant. The additive and multiplicative constants can
be fixed by the condition

f (u) =
1
u2 +O(u2) (14.1.7)

near the origin. The best approach seems to be to consider the derivative, which
would be odd, of order 3, with a triple pole at the origin, and with

f ′(u) = − 2
u3 +O(u) (14.1.8)

near the origin.

Proposition 14.1.5. Suppose that g is an odd elliptic function of order 3 with peri-
ods 2ω1, 2ω2 and a triple pole at the origin. Then g has three simple zeros in Π at
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the half-periods {ω j}, and is uniquely determined by the condition (14.1.8). Fur-
thermore, there is a unique even elliptic function f such that f ′ = g and f satisfies
the condition (14.1.7).

Proof: As in the previous proof, each of the half-periods must be a zero or pole
of g. Since g is assumed to have order 3, each of the ω j must be a simple zero.
The residue of g at the origin is zero: see the proof of Proposition 14.1.2. Therefore
the condition (14.1.8) determines g uniquely.

The associated function f must be given by

f (u) =
1
u2 +

∫ u

0
h(t)dt, h(u) = g(u)+

2
u3 .

By assumption, h(u) =O(u) near the origin, so f satisfies condition (14.1.7). Since
f ′ = g is odd, f is even. The translates f (u+2ω j) have the same derivative as f , so
they differ from f by constants c j. Note that h is odd, so

c j = f (ω j)− f (−ω j) =
∫ ω j

−ω j

h(t)dt = 0.

Therefore f has periods 2ω j. �

A look ahead. In the case of Jacobi elliptic functions, the periods are expressed in
terms of real constants K and K′. There are three basic functions of order 2, sn , cn ,
and dn , each of which has simple poles and simple zeros. The periods of sn are 4K
and 2iK′, of cn are 4K and 2K+ 2iK′, and of dn are 2K and 4iK′. (Thus each can
be considered as having order 4, with periods 4K, 4iK′.)

The basic elliptic function in the Weierstrass theory, denoted℘, is even and char-
acterized by the conditions

℘(u) =
1
u2 +O(1), u ∈ Π .

It is worth emphasizing that, to this point, we have not shown that non-constant
elliptic functions actually exist. The existence statement in Proposition 14.1.5 was
based on the assumption of the existence of the function g with the stated properties.

14.2 Theta functions

As noted earlier, the usual normalization of the periods is to number them so that
ω2/ω1 = τ has positive imaginary part. Replacing f with g(u) = f (2ω1u), we may
normalize further to periods 1,τ , with τ ∈ C+.

The basic idea of the construction of elliptic functions via theta functions is that
although a non-constant elliptic function cannot be entire, it may be the quotient of
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two entire functions that are as close as possible to being doubly periodic. To this
end we look for an entire function

Θ(u) = Θ(u|τ)
such that

Θ(u+1) = Θ(u), Θ(u+ τ) = a(u)Θ(u), (14.2.1)

where the function a is as simple as possible. The conditions imposed on Θ imply
that a should be entire, nowhere zero, and have period 1.

Another desirable condition is that Θ have a single zero in a period parallelo-
gram. If the boundary is Γ , this amounts to asking that

1 =
1

2πi

∫

Γ

Θ ′(u)
Θ(u)

du. (14.2.2)

Now Θ ′/Θ has period 1, so the two integrals over sides not parallel to the real axis
cancel. On the upper boundary Θ ′/Θ differs from its value on the lower boundary
by a′/a. Therefore (14.2.2) reduces to

1 = − 1
2πi

∫ 1

0

a′(u)
a(u)

du,

and the simplest solution is a′/a ≡ −2πi, or a = ce−2πiu, where c is a non-zero
constant. The standard choice is c=−1, so

a(u) = −e−2πiu, (14.2.3)

which is indeed entire, periodic, and never zero. Thus our conditions on Θ are

Θ(u+1) = Θ(u), Θ(u+ τ) = −e−2πiuΘ(u).

To determine Θ we begin with a formal Fourier expansion

Θ(u) =
∞

∑
−∞

an e
2nπiu =

∞

∑
−∞

an p(u)2n, p(u)≡ eiπu. (14.2.4)

Then p(u+ τ) = p(u)q with q = eiπτ , so (14.2.1) and (14.2.4) yield the formal
identity

Θ(u+ τ) =
∞

∑
−∞

an p
2n q2n = −p−2

∞

∑
−∞

an p
2n = −

∞

∑
−∞

an p
2n−2.

Equating coefficients of p2n−2 gives

an = −q2(n−1)an−1.

Taking a0 = 1, we find for positive n that
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an = (−1)nqn(n−1). (14.2.5)

For negative indices we start with

q−2na−n = −a1−n

and obtain
a−n = (−1)nqn(n+1) = (−1)nq(−n)(−n−1),

which confirms (14.2.5) for every index. Thus we have a formal expression for Θ :

Θ(u) =
∞

∑
n=−∞

(−1)n p(u)2n qn(n−1), p(u) = eiπu, q= eiπτ . (14.2.6)

Proposition 14.2.1. Suppose τ ∈ C+. The series (14.2.6) converges and defines an
entire function with the properties

Θ(u+1) = Θ(u), Θ(u+ τ) = −e−2πiuΘ(u). (14.2.7)

The zeros of Θ are the points of the period lattice

Λ(1,τ) = {m+nτ : m,n= 0,±1,±2, . . .}.

Proof: Convergence follows from the fact that Re(iτ) < 0, so |q| < 1. The coeffi-
cients have moduli that are O(|p(u)2nqn

2 |). This decreases very rapidly as |n| → ∞,
uniformly for u in bounded sets. Therefore (14.2.6) defines an entire function. Peri-
odicity follows from the periodicity of p. The identity for Θ(u+ τ) follows from
(14.2.5). By construction there is a unique zero in each period parallelogram. But

Θ(0) =
∞

∑
n=−∞

(−1)nqn(n−1)

=
∞

∑
n=1

(−1)nqn(n−1) +
∞

∑
m=0

(−1)mq(m+1)m

=
∞

∑
n=1

[
(−1)nqn(n−1) + (−1)n−1qn(n−1)

]
= 0.

It follows from this and the properties (14.2.7) that the zeros of Θ are precisely the
points of Λ(1,τ). �

Propositions 14.1.4 and 14.1.5 indicate the special importance of the half-
periods, which in this case are 1

2 and 1
2 τ .

Proposition 14.2.2. The function Θ has the following properties:
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p(u)−1Θ(u) is an odd function;

p(u)−1Θ(u± 1
2 ) is an even function;

Θ(u+ 1
2 τ) is an even function;

Θ(u+ 1
2 τ ± 1

2 ) is an even function;

p(u)−2qΘ(u− 1
2 τ) = −Θ(u+ 1

2 τ);

p(u)−2qΘ(u− 1
2 τ ± 1

2 ) = Θ(u+ 1
2 τ ± 1

2 ).

The proof is left as Exercise 8.

The functions described here are close to the quartet of Jacobi theta functions:

θ1(u) = i
∞

∑
−∞

(−1)np2n−1q(n−
1
2 )

2
; (14.2.8)

θ2(u) =
∞

∑
−∞

p2n−1q(n−
1
2 )

2
; (14.2.9)

θ3(u) =
∞

∑
−∞

p2nqn
2
; (14.2.10)

θ4(u) =
∞

∑
−∞

(−1)np2nqn
2
; (14.2.11)

see Exercise 9.

14.3 Construction of elliptic functions

We begin by constructing the two types of elliptic function f of order 2 discussed in
Section 14.1. First, let us construct f odd with simple zeros at 0 and 1/2 and simple
poles at τ/2 and (1+ τ)/2. This suggests the quotient

g(u) =
Θ(u)Θ(u− 1

2 )
Θ(u− 1

2 τ)Θ(u− 1
2 − 1

2 τ)
.

Now a(u− c) = a(u)e2πic, so

g(u+ τ)
g(u)

=
a(u)a(u− 1

2 )
a(u− 1

2 τ)a(u− 1
2 − 1

2 τ)
=

eπi

eπi[τ+(1+τ)] = e−2πiτ .

It is easy enough to modify in order to get period τ . Recall that each element of the
period lattice Λ is a zero of Θ , so we can replace Θ(u− 1

2 τ) by Θ(u+ 1
2 τ).
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Proposition 14.3.1. The function

f (u) =
Θ(u)Θ(u− 1

2 )
Θ(u+ 1

2 τ)Θ(u− 1
2 − 1

2 τ)
(14.3.1)

is elliptic, with periods 1,τ . Moreover, f has order 2 and is odd.

Proof: The function f is clearly meromorphic and has period 1. A calculation as
above shows that f also has period τ . Since Θ is entire and u = 0 is its only zero
in the period parallelogram Π , it follows that the zeros of f in Π are simple zeros
at u = 0 and u = 1

2 . Similarly, the poles of f in Π are simple poles at u = 1
2 τ and

u= 1
2 (1+ τ). Therefore f is elliptic of order 2. The fact that f is odd follows from

Proposition 14.2.2; see Exercise 10. �

For a second way to construct this type of function, see Exercise 12.

To construct a function of the type in Proposition 14.3.2, it is enough to construct
(a multiple of) the derivative.

Proposition 14.3.2. Suppose τ ∈ C+. The function

g(u) =
Θ(u+ 1

2 )Θ(u+ 1
2 τ)Θ(u− 1

2 − 1
2 τ)

Θ(u)3 (14.3.2)

is odd, elliptic of order 3 with periods 1,τ and has a triple pole at the origin.

Proof: The periodicity argument is essentially the same as the argument for Proposi-
tion 14.3.1. The fact that g is odd follows from Proposition 14.2.2; see Exercise 11.
�

The preceding two propositions are examples of a completely general construc-
tion of elliptic functions.

Theorem 14.3.3. Suppose τ ∈C+. Every non-constant elliptic function F with peri-
ods 1,τ has the form

F(u) = c
Θ(u−a1)Θ(u−a2) · · ·Θ(u−ak)
Θ(u−b1)Θ(u−b2) · · ·Θ(u−bk)

, (14.3.3)

where c is constant, k ≥ 2 and

a1 +a2 + · · ·+ak = b1 +b2 + · · ·+bk. (14.3.4)

Conversely, every function of this form is elliptic of order k.

Proof: Given an elliptic function f of order k, let the {a j} and {b j} be as in Proposi-
tion 14.1.3, and let p be given by (14.1.5). Since p is a period of f , we may replace



214 14 Elliptic functions and theta functions

a1 by a1− p and accomplish (14.3.4) without changing the zeros of f . Let F be given
by (14.3.3) with c = 1. The condition (14.3.4) is sufficient for F to have period τ
in addition to period 1. Thus F is elliptic and has the same zeros and poles as f , so
f/F is constant.

Conversely, each F constructed in this way is elliptic of order k. �

14.4 Integrating elliptic functions

Let Z be the logarithmic derivative of Θ :

Z(u) =
Θ ′(u)
Θ(u)

. (14.4.1)

This has period 1 and a simple pole at each lattice point. The second property in
(14.2.1) implies that

Z(u+ τ) = Z(u)−2πi. (14.4.2)

Therefore any linear combination of translates of Z whose coefficients sum to zero,

n

∑
j=1

c j Z(u−b j),
n

∑
j=1

c j = 0, (14.4.3)

has period τ and is elliptic. Since Z is a derivative, combinations (14.4.3) can be
integrated, in terms of linear combinations of logarithms of translates of Θ .

The identity (14.4.2) implies that the derivative

Z′(u) =
Θ ′′(u)
Θ(u)

−Z(u)2 (14.4.4)

has period 1 and a double pole at each lattice point.
Suppose now that f is an arbitrary non-constant elliptic function with periods 1

and τ that we wish to integrate. Suppose first that f has only simple poles. As noted
in the proof of Proposition 14.1.2, the sum of the residues in a period parallelogram
is zero. Therefore f differs from a combination (14.4.3) by a constant function.

If f has a pole of order k > 1, at u= b, then there is a constant c such that

f (u)− cZ(k−1)(u−b)

has a pole of order < k (or a removable singularity) at b. Continuing, we can express
f in the form

f (u) =
[
∑cmZ

(m)(u−bm)
]′
+g(u),

where g has only simple poles or is constant.
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Exercises

1. Suppose that Im(ω2/ω1)> 0, and

ω ′
1 = aω1 +bω2; ω ′

2 = cω1 +dω2,

where a,b,c,d are complex constants. Show that the pairs ω1,ω2 and ω ′
1,ω ′

2
generate the same period lattice if and only if a,b,c,d are integers and ad−bc=
±1. Show that Im(ω ′

2/ω ′
1)> 0 if and only if ad−bc= 1.

2. Show that if f is an elliptic function of order m, its even and odd parts

fe(u) =
1
2
[ f (u)+ f (−u)], fo(u) =

1
2
[ f (u)− f (−u)]

are elliptic functions with the same periods, and orders ≤ m.
3. Suppose that f has period 2ω .

(a) Suppose that f is odd. Show that f is odd around ω .

(b) Suppose that f is even. Show that f is even around ω .
4. Suppose that f is elliptic with periods 2ω j and is odd. Show that each of the

points 0, ω1, ω2, and ω1 +ω2 is a zero or pole of f .
5. Suppose that f is an elliptic function of order m > 0. Show that 1/ f is also

elliptic of order m.
6. Suppose f has order m. Show that the order of f ′ can be anything from m+ 1

to 2m.
7. Suppose that f and g are elliptic functions with the same periods. Suppose that

f has order m> 0 and g has order n≥m. What can be said about (a) the order of
the sum f +g, (b) the order of the product f g, and (c) the order of the quotient
f/g?

8. Use the definition of Θ and the properties

p(u+ 1
2 )

2 = −p(u)2, p(u+ 1
2 τ)2 = p(u)2 q

to prove Proposition 14.2.2.
9. Write each of the Jacobi theta functions (14.2.8)–(14.2.11) as a multiple of one

of the functions in Proposition 14.2.2.
10. Use Proposition 14.2.2 to verify that (14.3.1) defines an odd function.
11. Use Proposition 14.2.2 to verify that (14.3.2) defines an odd function.
12. Show that the quotient

g(u) =
Θ(u)

p(u)Θ(u+ 1
2 τ)

has the same properties as the function in Proposition 14.3.1, but with respect
to periods 2 and τ rather than 1 and τ .

13. Suppose that f is even, elliptic of order 2 with a double pole in the period
parallelogram at u= 0, and satisfies
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f (u) =
1
u2 +O(u2)

as u→ 0. Show that ( f ′)2 −4 f 3 is elliptic of order at most two and satisfies an
equation

( f ′)2 = 4 f 3 +a f +b

for some constants a and b.
14. Suppose that f is elliptic of order two with simple poles at u= 0 and u= ω2 in

the period parallelogram, and is odd. Normalizing, we may assume that in the
period parallelogram,

f (u) =
1
u
− 1

u−ω2
+O(1).

Show that ( f ′)2 −4 f 4 is even and periodic, with order 2, and

( f ′)2 = 4 f 4 +a f 2 +b

for some constants a and b.
15. Suppose that f is as in Exercise 13 and g is an elliptic function with the same

periods. Show that g can be written as a linear combination of functions of the
form

P( f (u−a)), f ′(u−b)Q( f (u−b)), h(u− c),

where P and Q are polynomials and h has only simple poles or is constant.
16. This is the first in a series of exercises leading to a proof of the Jacobi triple

product formula, one version of which is

Θ(u+ 1
2 ) =

∞

∏
n=1

(1−q2n)[1− p(u)2q2n−1][1− p(u)−2q2n−1]. (14.4.5)

Deduce from the location of the zeros of the left side that

Θ(z+ 1
2 τ) = c(z,τ)

∞

∏
n=1

[1− p(z)2q2n−1][1− p(z)−2q2n−1], (14.4.6)

where c(z,τ) is an entire function of z with no zeros.
17. Compute the changes in the product in (14.4.6) if z is changed to z+ 1 or to

z+ τ , and show that c(z,τ) is independent of z: thus c(z,τ) = G(τ).
18. Show that the function G in Exercise 17 has limit 1 as Imτ → ∞.
19. Show that

Θ
(

1
4
+

1
2

τ
)

= G(τ)
∞

∏
n=1

(1+q4n−2)

=
∞

∑
−∞

(−i)nqn
2
=

∞

∑
−∞

(−1)mq(2m)
2
.
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20. Use Exercise 19 to show that

G(τ)
G(4τ)

=
∞

∏
n=1

(1−q8n−4)2

1+q4n−2

=
∞

∏
n=1

(1−q8n−4)(1−q4n−2).

21. Show that for |z|< 1,

∞

∏
n=1

(1− z2n−1) =
∞

∏
n=1

(1− zn)
1− z2n .

22. Use Exercises 20 and 21 to show that

G(τ)
G(4τ)

= ∏∞
n=1(1−q2n)

∏∞
n=1(1−q8n)

and therefore
G(τ)

G(4mτ)
= ∏∞

n=1(1−q2n)
∏∞

n=1(1−q4m2n)
.

23. Use Exercises 18 and 22 to prove the triple product formula (14.4.5).
24. Note that (14.4.5) is the same as

∞

∏
n=1

(1−q2n)[1− p(u)2q2n−1][1− p(u)−2q2n−1] =
∞

∑
−∞

(−1)np(u)2nqn
2
.

(14.4.7)
25. Deduce other versions of the triple product, and write the forms that correspond

to the form (14.4.7):

Θ(u) =
∞

∏
n=1

(1−q2n)(1− p2q2n−2)(1− p−2q2n);

Θ(u+ 1
2 ) =

∞

∏
n=1

(1−q2n)(1+ p2q2n−2)(1+ p−2q2n);

Θ(u+ 1
2 +

1
2 τ) =

∞

∏
n=1

(1−q2n)(1+ p2q2n−1)(1+ p−2q2n−1).

Remarks and further reading

There is a vast literature on elliptic functions. Weil [139] presents an approach due
to Eisenstein. Modern references include Siegel [128], Walker [138], and Armitage
and Eberlein [10]. For the early history, see Roy [121].
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For more on the history and modern developments of theta functions, see Kempf
[76] and Murty [101]. For more discussion of the literature, see the remarks at the
end of Chapter 14 of [16]. For an efficient presentation of Riemann’s theory of theta
functions in several variables, with applications, see Dubrovin [38].



Chapter 15
Jacobi elliptic functions

Jacobi elliptic functions are a realization of one of the simplest cases of elliptic
functions, as described in Chapter 14: functions with two simple poles in a period
parallelogram that are odd around each pole. These functions come up naturally in
certain problems of mechanics, such as the motion of an ideal pendulum. In pure
mathematics they arise, for example, in connection with maps from the upper half
plane to a parallelogram. In this chapter we begin with the pendulum equation and
derive the properties of the functions associated to it. The triple of Jacobi func-
tions sn , cn , dn is closely analogous to the pair of trigonometric functions sine and
cosine, and satisfy similar identities.

15.1 The pendulum equation

An ideal pendulum is probably the simplest equation of one-dimensional mechanics
that leads to functions beyond the standard fare of calculus. Consider the motion of
such a pendulum: the weight moves along an arc of a circle, its position at time t
marked by an angle θ(t) from the (downward) vertical; see Figure 15.1. Therefore
acceleration is proportional to θ ′′. The force, gravity, is essentially constant, directed
downward, so a little geometry shows that the component in the direction of the
pendulum’s motion is proportional to sinθ . Thus (after scaling) Newton’s equation
of motion has the form

2θ ′′ = −sinθ . (15.1.1)

Multiplying both sides of (15.1.1) by θ ′ and integrating give

(θ ′)2 = cosθ −a. (15.1.2)

We assume that 0 < a< 1, which has the effect of insuring that (15.1.2) has a non-
zero solution, and that the angle θ stays strictly between the upward verticals −π/2
and π/2. Let w(t) = sin( 1

2 θ(t)), so that (15.1.2) takes the form
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θ

Fig. 15.1 Pendulum

(w′)2 = A(1− k−2w2)(1−w2),

with 0 < k < 1. We let w(t) = ku(t) and rescale time to get an equation that can be
written as

dt
du

=
1

√
(1−u2)(1− k2u2)

. (15.1.3)

We expect the same position u to occur at different times t, i.e. t is not a single-
valued function of u. In any event we are more interested in the inverse function:
u(t) as a function of t. This function is defined implicitly by (15.1.3)

t =
∫ u(t)

u(0)

ds
√

(1− s2)(1− k2s2)
. (15.1.4)

Integrating (15.1.3) leads to the function

F(z) = F(k,z) =
∫ z

0

ds
√

(1− s2)(1− k2s2)
. (15.1.5)

In the next section we discuss the properties of this function.

15.2 Properties of the map F

We begin by looking at F as a function on the upper half plane C+.

Theorem 15.2.1. The function F maps the upper half plane C+ to a rectangle R.

Proof: Taking into account the fact that the integral is odd, F maps the interval
[−1,1] onto the interval [−K,K], where

K = K(k) =
∫ 1

0

ds
√

(1− s2)(1− k2s2)
. (15.2.1)

The interval [1,1/k] is mapped onto the interval from K to K+ iK′, where
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K′ = K′(k) =
∫ 1/k

1

ds
√

(s2 −1)(1− k2s2)
. (15.2.2)

The integral from 1/k to ∞ along the real axis is real and increasing. Since the
integrand is even, the integral from −∞ to −1/k is real and decreasing, and has
the same value. Therefore the image of [1/k,∞]∪ [−∞,−1/k] is the interval from
K+ iK′ to −K+ iK′. By symmetry, the image of [−1/k,−1] is the interval from
−K+ iK′ to −K, and the image of [−1,0] is [−K,0]. To show that the upper half
plane C+ maps to the interior of the rectangle, it is enough to note that F(i) has
positive imaginary part. �

Let P(z) = (1− z2)(1−k2z2). The function
√
P(z) has a well-defined branch, on

the complement of the two real intervals [−1/k,−1], [1,1/k], that is positive for z
in the positive imaginary axis. Of course

√
P(z) has a second branch on this same

complement that is negative on the positive imaginary axis. We can think of
√

P(z)
as a single-valued function if we take as its domain two copies of the complex plane,
(an “upper sheet” and a “lower sheet,” respectively) properly joined across the slits.
Better yet, consider two copies of the Riemann sphere, with the slits opened up and
glued together in such a way that the result is, topologically, a torus—see Figure 7.3.
This is also the natural domain for the reciprocal 1/

√
P(z).

We extend F by taking the integral (15.1.5) over other paths in the two-sheeted
representation of the domain of the integrand. By Cauchy’s theorem, the integral is
not changed if we deform a portion of the path that lies entirely in one of the two
sheets without leaving that sheet, i.e. without crossing one of the slits.

Consider a path from 0 = 0+ in the upper sheet back to 0+ that passes once
through each slit: first the slit on the right, then the left; see Figure 15.2. The path
may be taken along intervals 0 to 1 in the upper sheet, 1 to −1 in the lower sheet,
and −1 to 0 in the upper sheet. The integral along the path is 4K. The integral in the
opposite direction is −4K. This path can be retraced multiple times in one direction
or the other, and combined with any given path from 0+ to z. Therefore F(z) is only
defined up to addition of integer multiples of 4K.

Consider next a path from 0+ to itself in the upper sheet that goes around the
slit on the right. We take it to proceed on line segments in the upper sheet from 0
to 1, from 1 to 1/k along the upper margin of the slit, from 1/k back to 1 along

−1/k −1 0 1/k1

Fig. 15.2 Path from zero to zero
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the lower margin (thus with the integrand having opposite sign), and from 1 back
to 0. The contributions between 0 and 1 cancel, and the value of the integral is 2iK′.
Combining this with the previous argument, we conclude that F(z) is defined only
up to terms 4mK+2inK′, m,n integers.

Consider a path from z+ to z−, the representative of z = z+ on the lower sheet,
that crosses to the lower sheet at z= 1 and proceeds first to 0− and then to z−. The
result is the identity

F(z−) = 2K−F(z+). (15.2.3)

15.3 The Jacobi functions

As in the case of the revised pendulum equation (15.1.3), we look for a function sn
that inverts the function F . In view of the properties of F , we must have

sn(z+4K) = sn(z+2iK′) = sn z. (15.3.1)

The desired function can be defined implicitly by

z =
∫ sn z

0

ds
√

(1− s2)(1− k2s2)
, (15.3.2)

with z and 0 in the upper sheet, along any path in the domain of definition of the
integrand. Each path can be continuously deformed to one that includes a certain
number of copies of the two paths from 0 to 0 considered above; this ambiguity is
reflected in (15.3.1), which implies more generally that sn(z+ p) = sn(z) for each
p in the period lattice

Λ = Λ(k) = {4mK+2niK′ : m,n ∈ Z}. (15.3.3)

We shall see that sn is meromorphic, so sn is an elliptic function. Assuming this for
the moment, it follows that sn takes each finite or infinite value the same number of
times in each period rectangle

Πa = {u : u= a+4sK+2tiK′, 0 ≤ s, t < 1}. (15.3.4)

We know that sn has simple zeros at 0 and 2K only, so it takes each value twice.
Moreover sn is odd:

sn(−z) =−sn z. (15.3.5)

Therefore sn is odd around each half-period in Π0, i.e. 2K, iK′, and 2K+ iK′, so
each of these points is either a zero or a simple pole. It follows that iK′ and 2K+ iK′
must be simple poles.

Conversely, if we show that there are simple poles at these points and no other
in Πo, then periodicity implies that sn is everywhere meromorphic and therefore an
elliptic function. The points in Π0 where sn is infinite are the values of
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∫ ∞

0

ds
√
(1− s2)(1− k2s2)

over the positive imaginary axis, or first to 0 on the lower sheet and then over the
positive imaginary axis. The change of variable t =

√
s2 −1/

√
1− k2s2 shows that

the integral along the positive imaginary axis is

∫ i∞

0

ds
√

(1− s2)(1− k2s2)
= i

∫ ∞

0

dt
√

(1+ t2)(1+ k2t2)

= i
∫ 1/k

1

ds
√

(s2 −1)(1− k2s2)
= iK′.

An examination of the integral shows that iK′ is a simple pole—see Exercise 3.
Therefore 2K+ iK′ is a second simple pole and sn is indeed an elliptic function.

Since sn is odd, sn is odd around half-periods. Equation (15.2.3) implies that sn
is even around the quarter-period K. Thus

sn(2K− z) = −sn(2K+ z);
sn(iK′ − z) = −sn(iK′+ z);

sn(2K+ iK′ − z) =−sn(2K+ iK′+ z);
sn(K− z) = sn(K+ z).

(15.3.6)

From calculations above, and (15.3.6), we have specific values at certain combi-
nations of half-periods and quarter-periods:

sn 0 = sn(2K) = 0;

sn(iK′) = −sn(2K+ iK′) = ∞; (15.3.7)

sn K = −sn(3K) = 1;

sn(K+ iK′) = −sn(3K+ iK′) = 1/k. (15.3.8)

It follows from (15.3.2) that the derivative

sn ′ =
√
(1− sn 2)(1− k2sn 2). (15.3.9)

For z near 0 we may define functions cn z= cn(k,z) and dn z = dn(k,z) by taking
the principal branches of the square root:

cn =
√

1− sn 2, dn =
√

1− k2sn 2. (15.3.10)

Each of the functions 1− sn 2, 1− k2sn 2 has two double zeros in Π0, so this branch
of the square root can be continued analytically throughout Π0, apart from the poles
of sn . Since sn is even or odd about each half-period, the same is true of cn and dn.
Neither function vanishes at 0 or 2K, so they are even around these points. Similarly
cn is even around 2K+ iK′ and dn is even around K. Now cn has simple zeros at
K and 3K, and dn has simple zeros at K+ iK′ and 3K+ iK′. Therefore cn and dn
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are odd at these points, respectively. Both functions have simple poles at iK′ and
2K+ iK′, so they are odd at these points as well. It follows that these functions are
also doubly periodic, but with different periods:

cn u = cn(u+4K) = cn(u+2K+2iK′); (15.3.11)

dn u = dn(u+2K) = dn(u+4iK′). (15.3.12)

See Exercise 5.

It follows from these definitions and analytic continuation that cn and dn are
even functions. By definition

sn 2 + cn 2 = 1, dn 2 + k2sn 2 = 1, dn 2 − k2cn 2 = 1− k2. (15.3.13)

The derivatives satisfy

sn ′ = cn dn , cn ′ = −sn dn , dn ′ = −k2 sn cn . (15.3.14)

The functions sn , cn , dn are the Jacobi elliptic functions. From the definitions,
together with (15.3.7) and (15.3.8), one can compute the remaining values in the
following table:

0 K 2K 3K iK′ K+ iK′ 2K+ iK′ 3K+ iK′

sn 0 1 0 −1 ∞ k−1 ∞ −k−1

cn 1 0 −1 0 ∞ −ik′k−1 ∞ ik′k−1

dn 1 k′ 1 k′ ∞ 0 ∞ 0

The triple of functions sn , cn , dn is clearly analogous to the pair of functions
sine and cosine, solutions of the equation (S′)2 = 1− S2. There are analogues for
these Jacobi functions of the addition theorems for sine and cosine. Here we outline
a derivation of the addition theorems, with the details left to the exercises.

Consider the function

F(z) = cn z cn(z−u)+Asn z sn(z−u), u �= iK′+2mK+2niK′, (15.3.15)

where A is constant. This is an elliptic function with periods 2K and 2iK′; Exercise
18. The constant A can be chosen so that F does not have a pole at z= iK′. Therefore
F has no poles and, by Proposition 14.1.1, is constant. The constant can be computed
by taking z= 0. Observe that F(0) = cn u. For z close to 0,

F(z) = F(0)+F ′(0)z+O(z2)
= cn(u)+

[
cn ′(0) cn(−u)+ cn(0)cn ′(−u)

]
z

+Asn ′(0) sn(−u)z+O(z2). (15.3.16)

The values cn ′(0) and dn ′(0) can be obtained from (15.3.9) and (15.3.14), yielding

F(z) = cn u+[sn u dn u−A sn u]z+O(z2). (15.3.17)
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Therefore A= dn u and F(z) = cn u, which gives

dn u sn z sn(z−u)+ cn z cn(z−u) = cn u. (15.3.18)

A similar argument starting with

G(z) = dn z dn(z−u)+A sn z sn(z−u) (15.3.19)

leads to the equation

k2 cn u sn z sn(z−u)+dn z dn(z−u) = dn u.. (15.3.20)

Setting u= z+w in (15.3.18) and 15.3.20) gives

−dn(z+w) sn zsn w+ cn z cn w = cn(z+w); (15.3.21)

−k2 cn(z+w) sn z sn w+dn z dn w = dn(z+w). (15.3.22)

Setting u=−w in (15.3.18) and (15.3.20) gives

dn w sn z sn(z+w)+ cn z cn(z+w) = cn w; (15.3.23)

k2 cn wsn zsn(z+w)+dn zdn(z+w) = dn w. (15.3.24)

Equations (15.3.21), (15.3.22), and (15.3.23) are linear in sn(z+w), cn(z+w), and
dn(z+w). Solving for these expressions gives the addition formulas.

Theorem 15.3.1.

sn(z+w) =
sn z cn w dn w+ sn w cn z dn z

1− k2 sn 2 z sn 2w
;

cn(z+w) =
cn z cn w− sn z dn z sn wdn w

1− k2 sn 2zsn 2w
;

dn(z+w) =
dn z dn w− k2 sn z cn z sn w cn w

1− k2 sn 2zsn 2w
.

15.4 Elliptic curves: Jacobi parametrization

This section is parallel to, but independent of, Section 16.3. An algebraic curve in
C

2 is a set
CP = {(w,z) ∈ C

2 : P(w,z) = 0},
where P is a polynomial in two variables. The simplest non-trivial example involves
P of degree two, not the product of two linear terms. With a linear change of vari-
ables P may be put in the form P(w,z) = w2 + z2 = 1, i.e.

w2 = 1− z2.
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The corresponding set CP = {(w,z) : z2 = 1−w2} can be parametrized by the
map

u → (cosu,sinu) = ( f ′(u), f (u)), f (u) = sinu.

In view of equations (15.3.10) and (15.3.14) the curve defined by analogous
equation

w2 = Q(z), (15.4.1)

where Q is quartic (degree 4), can be parametrized by the map

u → (sn ′(u),sn(u)).

As shown in Section 16.3, the curve defined by equation (15.4.1) when Q is cubic
can also be parametrized by an elliptic function and its derivative. Thus, for Q of
degree 2, 3, or 4, the curve associated to equation (16.3.1) can be parameterized
by functions meromorphic in the entire plane. Picard showed that this is no longer
possible as soon as Q has degree greater than 4; see Theorem 9.4.2.

Exercises

1. Suppose w1 < w2 < w3 < w4 are four distinct real numbers. Show that there is
a linear fractional transformation, taking C+ to itself, that maps these points,
respectively, to −1/k <−1 < 1 < 1/k for some real k.

2. Prove (15.3.6).
3. Show that sn has simple poles at iK′ and −2K + iK′ with residues 1/k and

−1/k, respectively.
4. Find analogues of (15.3.9) for cn ′ and dn ′.
5. Use the symmetry properties of cn and dn to verify (15.3.11) and (15.3.12).
6. Show that none of 2K, 2iK′, or K+ iK′ is a period of cn .
7. Show that neither K nor 2iK′ is a period of dn .
8. Verify the values of cn and dn in the table.
9. Show that the residues of cn are −i/k at iK′ and i/k at 2K+ iK′.

10. Show that the residues of dn are −i at iK′ and i at 2K+ iK′.
11. Suppose that f has period 4K and is either even or odd around u = 2K. Prove

that g(u) = f (u) f (u−z) has period 2K. Deduce that the function F in (15.3.15)
is elliptic with the stated periods.

12. Show that the constant A in (15.3.15) can be chosen so that F is holomorphic at
iK′, hence constant.

13. Use (15.3.10) and (15.3.14) to justify the passage from (15.3.16) to (15.3.17).
14. Verify (15.3.18).
15. Carry out the argument leading from (15.3.19) to (15.3.20).
16. Verify the formulas in Theorem 15.3.1.
17. Show that the formula for sn(z+w) can be expressed entirely in terms of sn z,

sn w, sn ′z, sn ′w, and find analogous expressions for cn(z+w) and dn(z+w).
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18. (a) Show that sn and cn are odd around u= K, while dn is even around u= K.

(b) Use part (a) to show that if (15.3.15) has no pole at iK′, then it has no pole
at 2K+ iK′.

Remarks and further reading

See the references for Chapter 14.



Chapter 16
Weierstrass elliptic functions

This chapter depends on Chapter 14 but not on Chapter 15. Here we look for a more
direct approach to elliptic functions with given periods:

f (z+2ω1) = f (z) = f (z+2ω2), Im
ω2

ω1
> 0. (16.0.1)

The associated period lattice is

Λ = Λ(2ω1,2ω2) = {2mω1 +2nω2 : n,m= 0,±1,±2, . . .} (16.0.2)

and the associated period parallelograms are

Πa = Πa(2ω1,2ω2) = {a+2sω1 +2tω2, : 0 ≤ s, t < 1}, a ∈ C. (16.0.3)

Weierstrass’s approach to elliptic functions was to start with the period lattice and
construct associated functions explicitly.

16.1 The Weierstrass℘ function

The simplest elliptic function of order two that is canonically associated to the
period lattice Λ of (16.0.2) is one that is even and has a double pole at each point p
of Λ , with

f (u) =
1
u2 +O(u2)

near the origin. Weierstrass constructed such a function ℘ explicitly. It is tempting
to use the recipe

∑
p∈Λ

1
(z− p)2

for ℘, since this (formal) sum appears to be doubly periodic, with a double pole at
each point p ∈ Λ . However the series does not converge.
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We begin, instead, with a proposal for the derivative:

℘′(u) = ∑
p∈Λ

2
(p−u)3 =

∞

∑
m,n=−∞

2
(2mω1 +2nω2 −u)3 .

This converges for each u not in Λ . In fact, given u ∈ C \Λ , the number of lattice
points p in the annulus r ≤ |p−u| < 2r is bounded by a multiple of the area 3πr2,
and each point in the annulus contributes O(1/r3) to the sum. Thus the sum of the
moduli of such terms is dominated by a fixed constant times r2/r3 = 1/r. Taking
r = 2n, n= 0,1,2, . . . , we find that the sum of the moduli of the terms of the series
with |p− u| ≥ 1 is bounded by a fixed constant. It is easily seen that the series
converges uniformly on each compact subset of the complement of Λ and defines
an odd, periodic, meromorphic function with order 3. Moreover

℘′(u) = − 2
u3 +O(u) (16.1.1)

as u→ 0. Therefore we proceed as in the proof of Proposition 14.1.5 to define the
Weierstrass℘ function by

℘(u) = ℘(2ω1,2ω2; u) =
1
u2 +

∫ u

0

{
℘′(s)+

2
s3

}
ds

=
1
u2 +

∫ u

0
∑

p∈Λ , p �=0

2
(p− s)3 ds.

The series in the integrand converges, since, for fixed u not in Λ , the terms are
O(p−3) for large p. Therefore we may integrate term-by-term and find that

℘(u) =
1
u2 + ∑

p∈Λ , p �=0

[
1

(u− p)2 − 1
p2

]
. (16.1.2)

Notice that the integral is independent of the path (which is assumed to avoid Λ ),
since integrating around a point of Λ picks up the residue at that pole, which is zero.
As noted in the proof of Proposition 14.1.5, the function defined in this way is even
and periodic, with periods 2ω j.

Returning to ℘′, since it is odd, with a pole of order 3 at the origin, the three
half-periods ω1, ω2, ω3 = ω1 +ω2 are simple zeros of ℘′. It follows that ℘ takes
each of the corresponding values e j =℘(ω j) with multiplicity two. Since ℘ has
order 2, the values e j must be distinct.

Proposition 16.1.1. The Weierstrass function ℘ satisfies a differential equation of
the form

(℘′)2 = 4℘3 −g2℘−g3. (16.1.3)

Proof: The functions ℘3 and (℘′)2 have Λ as period lattice, and each has a pole of
order 6 at the origin. Since ℘′ is odd, the singular part of (℘′)2 at the origin has
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no terms of order less than two. In view of (16.1.1), the singular part of ℘3 at the
origin, which is even, has no term of lower order other than order 2. Checking the
terms of order at most 6, we find that there are constants g2, g3 such that the doubly
periodic function

(℘′)2 −4℘3 +g2℘+g3

is entire and vanishes at u= 0. �

The equation (16.1.3) can be written

℘′ =
√
Q(℘), Q(t) = 4t3 −g2t−g3.

Inverting, we are led to the integral equation

u= u0 +
∫ ℘(u)

℘(u0)

ds√
4s3 −g2s−g3

. (16.1.4)

Equations (16.1.3) and (16.1.1), and the fact that the e j are distinct, imply that

Q(t) ≡ 4t3 −g2t−g3 = 4(t− e1)(t− e2)(t− e3), e j = ℘(ω j). (16.1.5)

Therefore

e1 + e2 + e3 = 0;

4(e1e2 + e2e3 + e3e1) = −g2;

4e1e2e3 = g3.

We can characterize the elliptic functions with period lattice Λ .

Theorem 16.1.2. Each elliptic function with period lattice Λ is a rational function
of translates of℘and℘′.

Proof: Let f be such a function, and assume first that f is even. Subtracting some
linear combination of powers of ℘, we may assume that f is regular and non-zero
at the origin. The assumption that f is even means that the zeros and poles in the
period parallelogram

Π = {2sω1 +2tω2 : −1 ≤ s, t < 1}
come in pairs c,c∗ symmetric about the midpoint ω3 of Π : ω3 −c = ω3 +c∗. Take
one representative a j from each pair of zeros and one representative b j from each
pair of poles, j = 1,2, . . . ,n. Then

g(u) =
n

∏
k=1

℘(u)−℘(ak)
℘(u)−℘(bk)

has the same zeros and poles as f , counting multiplicity, so the quotient f/g is
constant.

Suppose now that f is odd. Then f = g℘′, where g= f/℘′ is even. �
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16.2 Integration of elliptic functions

What happens if we integrate ℘? The Weierstrass zeta function ζ (u) is determined
uniquely by the conditions

ζ ′(u) = −℘(u), ζ (−u) = −ζ (u).

Note that ℘(u)− 1/u2 is regular at the origin. For u not in the period lattice Λ we
take

ζ (u) =
1
u
+

∫ u

0

[
1
s2 −℘(s)

]
ds.

The residues of the integrand at the non-zero points of the period lattice Λ all vanish,
so the integration can be taken along any path that avoids Λ , and ζ is single-valued
and meromorphic. The derivative is −℘. Expanding the integrand,

ζ (u) =
1
u
+

∫ u

0
∑

p∈Λ , p �=0

[
1
p2 − 1

(s− p)2

]
ds.

Again, the terms in the series are O(p−3) so the term-by-term integration is justified
and

ζ (u) =
1
u
+ ∑

p∈Λ , p �=0

[
u
p2 +

1
u− p

+
1
p

]
. (16.2.1)

Thus ζ (u) = 1/u+O(1) near the origin. This is the only pole in Π , so ζ cannot
have Λ as period lattice. For u+ω j not in Λ , since ℘ has period 2ω j, the integral

∫ u+2ω j

u
℘(s)ds = ζ (u+2ω j)−ζ (u)

exists and is constant. Taking u=−ω j, we have, for u not in Λ ,

ζ (u+2ω j) = ζ (u)+2ζ (ω j). (16.2.2)

(The sum in (16.2.1) converges, since it is obtained by integrating an absolutely
convergent sum, or one can check directly that the term indexed by p is O(|p|−3).)

Consider now a general elliptic function f . If f has simple poles at b1, . . . ,bn in
Π0 with residues a1, . . . ,ak, then

g(u) = f (u)−
k

∑
j=1

a j ζ (u−b j)

has only poles of higher order in Π0. Moreover we know from integrating f around
the boundary of Πa, some a ≈ 0, that ∑k

j=1 a j = 0. In view of this and (16.2.2),
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g is elliptic. Since g has only multiple poles, it is, up to an additive constant, a
linear combination of translates of derivatives of ζ ′ =−℘. Thus f itself is the sum
of a linear combination of translates of ζ , translate of ℘ and its derivatives, and a
constant.

We have reduced the question of integrating an elliptic function to the question
of integrating (translates of) ζ . This leads to the Weierstrass sigma function, char-
acterized by the conditions

σ ′

σ
= ζ , lim

u→0

σ(u)
u

= 1.

Then logσ is an integral of ζ . We take

logσ(u) = logu+
∫ u

0

[
ζ (s)− 1

s

]
ds.

Once again we may put in the series expansion of the integrand and integrate term-
by-term to obtain

logσ(u) = logu+ ∑
p∈Λ , p �=0

[
log

(
1− u

p

)
+

u
p
+

u2

2p2

]
.

It follows that

σ(u) = u ∏
p∈Λ , p �=0

(
1− u

p

)
exp

(
u
p
+

u2

2p2

)
(16.2.3)

is an entire function whose zeros are the lattice points Λ . The function σ is a close
analogue of the function Θ of Chapter 14. In fact

d
du

{
log

σ(u+2ω j)
σ(u)

}
= ζ (u+2ω j)−ζ (u) = 2η j

so

log
σ(u+2ω j)

σ(u)
= 2η ju+Cj, Cj constant.

In particular, taking u=−ω j we have

log
σ(ω j)

σ(−ω j)
= −2η jω j+Cj.

Since σ is odd, the left side is (some determination of) log(−1), so

Cj = log(−1)+2η jω j

and

log
σ(u+2ω j)

σ(u)
= log(−1)+2η jω j+2η ju.
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Thus
σ(u+2ω j) = −e2η j(ω j+u)σ(u). (16.2.4)

This identity leads to a representation of elliptic functions as quotients of entire
functions; see Exercise 9.

Theorem 16.2.1. Each elliptic function f of order m with periods 2ω1, 2ω2 can be
written in the form

f (u) = c
∏m

j=1 σ(u−a j)

∏m
j=1 σ(u−b j)

,

where c is constant.

If n is an integer ≥ 2, the sum

Gn = ∑
p∈Λ ,p �=0

1
p2n (16.2.5)

is called the Eisenstein series of order n. In particular ℘′′(z)−6z−4 has a removable
singularity at z= 0 with value 6G2. Other relations of the Gn with℘, with each other
and with the coefficients g2, g3 in the differential equation (16.1.3) are explored in
Exercises 4–8.

Why only even powers in (16.2.5)? For n≥ 1 the series

∑
p∈Λ , p �=0

1
p2n+1

converges absolutely, but each 0 �= p ∈ Λ can be matched with −p, so the sum is
zero.

16.3 Elliptic curves: Weierstrass parametrization

This section is parallel to, but independent of, Section 15.4. An algebraic curve in
C

2 is the set
CP = {(w,z) ∈ C

2 : P(w,z) = 0},
where P is a polynomial in two variables. The simplest non-trivial example involves
P of degree two, not the product of two linear terms. With a linear change of vari-
ables P may be put in the form P(w,z) = w2 + z2 = 1, i.e.

w2 = 1− z2.

The corresponding set CP = {(w,z) : z2 = 1−w2} can be parametrized by the
map

u → (cosu,sinu) = ( f ′(u), f (u)), f (u) = sinu.
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In view of equation (16.1.3), the curve is defined by analogous equation

w2 = Q(z), (16.3.1)

where Q is cubic, which can be parametrized by the map

u → (℘′(u),℘(u)). (16.3.2)

(To be precise, the cubic Q in (16.3.1) can easily be normalized to have the form
4z3 −g2z−g3. If we assume that Q has three distinct roots, then it does arise in the
equation of a suitable ℘, and the map (16.3.2) is surjective: Exercise 11.)

As shown in Section 15.4, the curve defined by equation (16.3.1) when Q is
quartic (degree 4) can also be parametrized by an elliptic function and its derivative.
Thus for Q of degree 2, 3, or 4, the curve associated to equation (16.3.1) can be
parameterized by functions meromorphic in the entire plane. Picard showed that
this is no longer possible as soon as Q has degree > 4: Theorem 9.4.2.

16.4 Addition on the curve

The basic periodic functions in one variable satisfy “addition theorems,” for exam-
ple,

sinu+ sinv = 2sin

(
u+ v

2

)
cos

(
u− v

2

)
.

The Weierstrass function℘satisfies an equation of this type, based on the following
observation: each complex line in C

2 of the form

L = La,b = {(z,w) : w= az+b}, a �= 0,

meets the curve C in C
2, defined by the equation

C = {(z,w) : w2 = 4z3 −g2z−g3}, (16.4.1)

in three points, counting multiplicity. In fact substituting az+ b for w reduces the
equation to a cubic equation for z. If (z,w) is such a solution then

0 = (w+az+b)(w−az−b) = w2 − (az+b)2 (16.4.2)

= 4z3 −a2z2 − (2ab+g2)z− (b2 +g3). (16.4.3)

Therefore if the three points of intersections of L and C are (z j,wj), then the z j are
the roots of the cubic in (16.4.3), so

4(z1 + z2 + z3) = a2. (16.4.4)

On the other hand, the two equations wj = az j+b, j = 1,2 determine
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a =
w2 −w1

z2 − z1
, (16.4.5)

and combining this with (16.4.4) gives

z3 = −z1 − z2 +
1
4

(
w2 −w1

z2 − z1

)2

. (16.4.6)

This leads to the addition formula for ℘.

Theorem 16.4.1. If℘(u) �=℘(v), then

℘(u+ v) = −℘(u)−℘(v)+
1
4

(
℘′(v)−℘′(u)
℘(v)−℘(u)

)2

. (16.4.7)

Proof: The assumption that ℘(u) �= ℘(v) implies that there is a unique solution
(a,b) ∈ C

2 to the pair of equations

℘′(u) = a℘(u)+b, ℘′(v) = a℘(v)+b.

The function
℘′(z)−a℘(z)−b

is elliptic of order 3 with a pole of order three at the origin. Therefore there are three
zeros, counting multiplicity. The pole has residue zero, so the sum of the zeros is a
lattice point, and we may assume that they are chosen so that the sum is zero. By the
choice of (a,b), two of the zeros are u and v, so the third is −(u+v). But ℘ is even,
so ℘(u+ v) = ℘(−u− v). Therefore equation (16.4.6) gives (16.4.7). �

Theorem 16.4.1 can be interpreted as describing a geometric procedure that
equips the elliptic curve C with the structure of a commutative group. Note that
if R = (z,w) is a point of C, then so is R∗ = (z,−w). The group operation assigns
to two points P, Q on C the point R∗, where R is the third point of intersection of C
with the line that passes through P and Q. (Figure 16.1 illustrates this; it shows the
graph in R

2 of y2 = P(x) for a choice of P having three real zeros.)
This operation is clearly commutative, but it is not obvious, based on the geo-

metric description alone, that it is associative. However, if P=℘(u), Q=℘(v), the
preceding argument shows that R can be taken to be℘(−u−v). Since℘ is even and
℘′ is odd, it follows that R∗ =℘(u+ v). In other words, the parametrization of C
by the map (16.3.2) is a group homomorphism between C, with addition as compo-
sition, and C with the geometric composition as just described. (Note that we must
extend both the geometric construction and the argument in the addition theorem to
the case P= Q: see Exercise 12.)
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P

Q R

R*=P+Q

Fig. 16.1 Addition on the curve

Exercises

1. Find ℘′′′ in terms of ℘ and ℘′.
2. Prove that

℘′′(u) = 6℘(u)2 − 1
2g2.

3. Prove that
℘′′(ω1) = 2(e1 − e2)(e1 − e3).

4. As noted above, for n> 1, Gn is defined by

∑
p∈Λ , p �=0

1
p2n .

Show that for u close to the origin

℘(u) =
1
u2 +

∞

∑
n=1

(2n+1)Gn+1u
2n.

5. Use Exercise 4 to prove that the coefficients in the differential equation (16.1.3)
are

g2 = 60G2, g3 = 140G3.

6. Compute G2 and G3 as functions of the periods 2ω1, 2ω2.
7. Use (16.1.3) and Exercise 5 to show that each Gn is a polynomial in g2 and g3

with rational coefficients.
8. Show that for n≥ 1, Gn has the Fourier expansion

Gn = 2ζ (2n)+
2(2πi)2n

(2n−1) !

∞

∑
m=1

σ2n−1(m)e2mπi.
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Here ζ is the Riemann zeta function (not the Weierstrass zeta function).
9. Use the analogue of Lemma 14.1.3 to prove Theorem 16.2.1; cf. the proof of

Theorem 14.3.3.
10. Express ℘ and ℘′ as in Theorem 16.2.1.
11. Suppose that Q(t) = 4t3 −at−b has three distinct roots.

(a) Show that there is a unique lattice Λ such that the corresponding Weierstrass
function ℘ satisfies ℘′ = Q(℘).
(b) Show that each point (z,w) in the curve w2 =Q(t) is equal to (℘(u),℘′(u))
for some u in the period parallelogram Π .

(c) Show that in all cases of three distinct roots there is a rational transformation
of the variable t such that in the new variable the associated lattice is {m+ in :
m,n ∈ Z}.

12. Extend the addition theorem to the case u = v and express ℘(2u) as a rational
function of ℘(u). How should the geometric construction of addition on the
curve be interpreted in this case?

Remarks and further reading

See the references for Chapter 14. For further applications of the Weierstrass theory,
see Chapter 17.



Chapter 17
Automorphic functions and
Picard’s theorem

This chapter relies heavily on Chapter 16, with some reference to analytic continu-
ation and conformal mapping, particularly Theorem 5.4.2.

Given a period lattice Λ in C, one wants to consider the meromorphic functions
that have simple behavior with respect to affine transformations that map Λ to itself.
In the case of invariance under translation by the periods, these are the elliptic func-
tions. In this chapter we introduce examples of an important class of functions with
different invariance properties, the automorphic functions. In particular, the modular
function λ is used, as it was by Picard, to prove that an entire function cannot omit
more than one value.

17.1 The elliptic modular function

We start by going back to the Weierstrass function ℘ and the associated zeros e j
discussed earlier:

4℘3−g2℘−g3 = 4(℘− e1)(℘− e2)(℘− e3), e j = ℘(ω j),

where 2ω1 and 2ω2 are the periods and ω3 = ω2+ω1. We now consider the roots e j
as functions of the periods. The elliptic modular function λ associated with a given
pair of periods is

λ =
e3− e2
e1− e2

. (17.1.1)

It is clear from the series expansion of℘, (16.1.2), that the roots e j are homogeneous
functions of the periods, having degree −2:

e j(2aω1,2aω2) = a−2e j(2ω1,2ω2), a �= 0. (17.1.2)
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It follows that λ is homogeneous of degree 0, and therefore depends only on the
ratio τ = ω2/ω1. Thus we consider λ as a function of τ . We shall always normalize
by assuming Imτ > 0.

Proposition 17.1.1. The modular function λ (τ) is holomorphic in C+ and does not
take the values 0 or 1.

Proof. The roots e j are holomorphic functions of ω1 and ω2 and depend only on the
ratio ω2/ω1. The roots are distinct, so λ is never 0 or 1. ��

17.2 The modular group and the fundamental domain

The period lattice is mapped onto itself by certain linear transformations:
[

ω ′
2

ω ′
1

]
=

[
a b
c d

] [
ω2

ω1

]
=

[
aω2+bω1

cω2+dω1

]
, (17.2.1)

where a,b,c,d are integers and the matrix is invertible. It follows that the determi-
nant ad− bc = ±1. The corresponding action on the ratio τ is given by the linear
fractional transformation

τ ′ =
aτ +b
cτ +d

.

Since we insist that Imτ ′ = Im(ω ′
2/ω ′

1) be positive we must have ad−bc= 1. The
group G of such matrices g with integer entries is called the modular group. (We
shall abuse the terminology here and identify each such matrix with the induced
linear fractional transformation, and conversely.)

Let us try for a canonical choice of generators of the lattice Λ = {2mω1+2nω2}.

Proposition 17.2.1. Generators 2ω ′
j can be chosen so that the ratio τ ′ belongs to

the set

Δ = {τ ′ ∈ C+ : |τ ′| ≥ 1, − 1
2 < Reτ ′ ≤ 1

2 , Reτ ′ ≥ 0 if |τ ′|= 1}. (17.2.2)

(See Figure 17.1.)

Proof: Choose 2ω ′
1 ∈ Λ with smallest modulus, and choose ±2ω ′

2 ∈ Λ , not a multi-
ple of ω ′

1, to have smallest modulus among such elements, with the sign chosen so
that Imτ ′ = Im(ω ′

2/ω ′
1) is positive. Then |τ ′| ≥ 1. Moreover, by the choice of ω ′

2
we have

|ω ′
2| ≤ |ω ′

2±ω ′
1|,

which implies that |Reτ ′| ≤ 1
2 . If Reτ ′ = − 1

2 , we may replace ω ′
2 with ω ′

2+ω ′
1. If

|τ ′| = 1, we may replace the pair ω ′
1,ω ′

2 with the pair −ω ′
2, ω ′

1. (See Exercise 1.)
��
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Δ

-1 0 1

Fig. 17.1 The region Δ

Next, we look at the behavior of λ under the action of the modular group on
the periods. The function℘ is determined by the lattice, so it is invariant under this
action. Therefore each g ∈ G permutes the set of zeros {e j}. Note that if any of
a,b,c,d in (17.2.1) is changed by adding or subtracting an even integer, then the
values of the e′j =℘(ω ′

j) are unchanged. Therefore G can be replaced, in its actions
on the e j and on λ , by its reduction mod 2.

The modular group is generated by the two elements

R =
[
0 1
−1 0

]
, T =

[
1 1
0 1

]
. (17.2.3)

The proof of this fact is left as Exercise 2.

Let us consider the effect of R. We have

ω ′
2 = ω1, ω ′

1 = −ω2, τ ′ = −1/τ,

and it follows from this and periodicity that e′1 = e2, e′2 = e1, e′3 = e3. Therefore

λ
(
−1

τ

)
=

e3− e1
e2− e1

=
e3− e2+ e2− e1

e2− e1
= 1−λ (τ). (17.2.4)

Similarly, let us consider the effect of T . Here

ω ′
2 = ω1+ω2 = ω3, ω ′

1 = ω1, ω ′
3 = 2ω1+ω2, τ ′ = τ +1.

Therefore e′1 = e1, e′2 = e3, e′3 = e2 and λ (τ +1) = (e2− e3)/(e1− e3). Thus

1
λ (τ +1)

=
e1− e3
e2− e3

=
e1− e2+ e2− e3

e2− e3
= 1− 1

λ (τ)
,

so
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λ (τ +1) =
λ (τ)

λ (τ)−1
. (17.2.5)

Iterating,
λ (τ +2) = λ (τ). (17.2.6)

It follows from (17.2.4) and (17.2.5) that

λ
(

1
1− τ

)
=

1
1−λ (τ)

; (17.2.7)

λ
(
1− 1

τ

)
= 1− 1

λ (τ)
. (17.2.8)

It follows from (17.2.4) and (17.2.5), that if g belongs to the modular group and
λ (τ) is real, then λ (g(τ)) is real.

Proposition 17.2.2. For each τ ∈ C+, there is an element g in the modular group
such that τ ′ = g(τ) belongs to the set Δ of (17.2.2). Moreover, τ ′ is unique.

Proof: The first assertion is just a restatement of Proposition 17.2.1. To prove
uniqueness amounts to showing that if τ and τ ′ belong to Δ , and they are related
by a modular transformation

τ ′ =
aτ +b
cτ +d

, a,b,c,d ∈ Z, ad−bc= 1, (17.2.9)

then τ ′ = τ . Note that (17.2.9) is equivalent to

τ =
dτ ′ −b
−cτ ′+a

. (17.2.10)

Suppose that c= 0. Then ad = 1 and τ ′ = τ ±b. If both τ ′ and τ belong to Δ , then
|Reτ ′ −Reτ |< 1, so b= 0 and τ ′ = τ .

Suppose that d = 0. Then bc=−1 and τ ′ = (−1/τ)±a. Since−1/τ =−τ̄/|τ |2,
the map τ →−1/τ takes Δ into the intersection of the unit disk with the strip where
−1/2≤ Rez< 1/2. If both τ and τ ′ belong to Δ , we must have |Re(−1/τ)| ≤ 1/2.
But also

|Reτ ′| =
∣∣∣∣Re

(
−1

τ

)
±a

∣∣∣∣ ≤ 1
2
.

Since a is an integer, it follows that a = 0 or a = ±1. A check of these three cases
shows that the only possibilities are |τ | = |τ ′| = 1 and Reτ = −1/2, a = −1 or
Reτ = 1/2, a= 1. In each case, τ ′ = τ .

The same argument, applied to (17.2.10), shows that a= 0 implies τ = τ ′.
Suppose, finally, that acd �= 0. Note that

Imτ ′ =
Imτ

|cτ +d|2 , Imτ =
Imτ ′

|cτ ′ −a|2 . (17.2.11)



17.2 The modular group and the fundamental domain 243

Again, |τ | ≥ 1, |Reτ | ≤ 1/2, so

|cτ +d|2 = [c2|τ |2+d2]+2cdReτ ≥ 2|cdτ |−2|cdReτ | ≥ |cd| ≥ 1.

Similarly |cτ ′ − a|2 ≥ 1. It follows from these inequalities that Imτ = Imτ ′, |τ | =
|τ ′|= 1, and |Reτ |= |Reτ ′|= 1/2. The last two identities reduce the possible loca-
tions of τ and τ ′ to two points, only one of which belongs to Δ . Thus in all cases
τ ′ = τ . ��

Combining Proposition 17.2.2 with (17.2.4) and (17.2.5), we see that λ is com-
pletely determined by its action on the set (17.2.2), and this is not true of any proper
subset of (17.2.2): Δ is a fundamental domain for the function λ . (This is standard
terminology, so we make an exception to our practice of taking a “domain” to be an
open set.)

17.3 A closer look at λ ; Picard’s theorem

Let us look more closely at the numerator and denominator of λ . For this purpose,
we may take the periods to be 1 and τ , τ ∈ C+. Then

e3− e2 = e3(1,τ)− e2(1,τ) = ℘( 12 +
1
2τ)−℘( 12τ)

=
∞

∑
(m,n)=−∞

[
1

[(m+ 1
2 )+(n+ 1

2 )τ]2
− 1

[m+(n+ 1
2 )τ]2

]
;

e1− e2 = e1(1,τ)− e2(1,τ) = ℘( 12 )−℘( 12τ)

=
∞

∑
(m,n)=−∞

[
1

[(m+ 1
2 )+nτ]2

− 1

[m+(n+ 1
2 )τ]2

]
.

The perfect tools for use here are the identities

∞

∑
m=−∞

1
(m+u)2

=
π2

(sinπu)2
; (17.3.1)

∞

∑
m=−∞

1

(m+ 1
2 +u)2

=
π2

(cosπu)2
. (17.3.2)

In fact the difference between the left side and the right side of (17.3.1) or (17.3.2)
is an entire function that is periodic, with period 1, that can easily be shown to
have limit 0 as u→ ∞ in the strip |Reu| ≤ 1

2 . Applying (17.3.1) and (17.3.2) to the
previous sums, we get
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e3(1,τ)− e2(1,τ) = π2
∞

∑
n=−∞

[
1

cos2 π(n+ 1
2 )τ

− 1

sin2 π(n+ 1
2 )τ

]

= 2π2
∞

∑
n=0

[
1

cos2 π(n+ 1
2 )τ

− 1

sin2 π(n+ 1
2 )τ

]
; (17.3.3)

e1(1,τ)− e2(1,τ) = π2
∞

∑
n=−∞

[
1

cos2 πnτ
− 1

sin2 π(n+ 1
2 )τ

]
. (17.3.4)

Now for real M, as Imτ → ∞

|cos(Mτ)|2 = O
(
e2|M|Imτ

)
; |sin(Mτ)|2 = O

(
e2|M|Imτ

)
.

Therefore the summand indexed by n in the first series in (17.3.4) is dominated by
exp(−2π|n|Imτ) for large Imτ . The summands indexed by n in the remaining series
in (17.3.3) and (17.3.4) are dominated by exp(−π|2n+1|Imτ). It follows from an
examination of the associated series that as Imτ → ∞,

e1(1,τ)− e2(1,τ) = π2+O(e−πImτ),
e3(1,τ)− e2(1,τ) = O(e−πImτ).

Therefore
lim

Imτ→∞
λ (τ) = 0. (17.3.5)

We use (17.3.5) with (17.2.4) and (17.2.5) to conclude that

lim
τ→0

λ (τ) = 1; lim
τ→1

λ (τ) = ∞. (17.3.6)

We need a more precise form of (17.3.5), obtained by taking into account the
principal terms in (17.3.3), those with n= 0 and n=−1. These sum to

2π2

cos2(πτ/2)
− 2π2

sin2(πτ/2)
= 2π2

{
4eiπτ

(1+ eiπτ)2
+

4eiπτ

(1− eiπτ)2

}
.

Therefore
λ (τ) = 16eiπτ +O(e−2πImτ) as Imτ →+∞. (17.3.7)

Note that Reτ = 0 implies that eiπτ is real and positive, so λ is real and positive
on the positive imaginary axis.

To complete our discussion of λ , we consider its behavior on the closure of the
domain Ω ,

Ω = {τ : Imτ > 0, 0< Reτ < 1, |τ − 1
2 |> 1

2}; (17.3.8)

see Figure 17.2. The boundary Γ of Ω consists of the three pieces

Γ1 = {τ : τ = it, 0< t < ∞},
Γ2 = {τ : |τ − 1

2 |= 1
2 , Imτ > 0},

Γ3 = {τ : τ = 1+ it, 0< t < ∞}.
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Orient the boundary so that Ω lies to the left.

ΩΓ1

Γ2

Γ3

0 1

Fig. 17.2 The domain Ω

The following facts are left as Exercises 3 and 4.

τ → 1
1− τ

⇒ Ω → Ω , Γ1 → Γ2, Γ2 → Γ3;

τ → 1− 1
τ

⇒ Ω → Ω , Γ1 → Γ3, Γ2 → Γ1; (17.3.9)

and

τ ∈ Γ1 ⇒ 0< λ (τ)< 1, lim
τ→0

λ (τ) = 1, lim
τ→∞

λ (τ) = 0;

τ ∈ Γ2 ⇒ 1< λ (τ)< ∞, lim
τ→0

λ (τ) = 1, lim
τ→1

λ (τ) = ∞;

τ ∈ Γ3 ⇒ λ (τ)< 0, lim
τ→1

λ (τ) =−∞, lim
τ→∞

λ (τ) = 0. (17.3.10)

Theorem 17.3.1. The elliptic modular function λ is a bijective conformal map of Ω
onto the upper half planeC+. It extends continuously to the boundary, and λ (∞)=0,
λ (0) = 1, λ (1) = ∞.

Proof: By the above remarks, λ extends to the points 0, 1, ∞. By (17.3.10), λ extends
across the Γj. Now suppose w ∈ C+. Choose a large value r > Imw, and let Ωr

denote the truncation of the domain Ω by cutting off the part above the segment
Ir = {σ + ir,0 < σ < 1} and the parts below the image of Ir under the maps
τ → 1/(1− τ) and τ → 1−1/τ . These images are arcs of the circles of radius 1/2r
with centers i/2r and 1+ i/2r, respectively. As τ follows the oriented boundary of
Ωr starting with the point ir, λ starts from a positive value that is close to zero,
passes through real values to values close to 1, then moves through positive values
along part of Γ2. Along the image of Ir near τ = 1 we have values λ (1−1/τ), τ ∈ Ir.
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As noted in (17.2.8), λ (1− 1/τ) = 1− 1/λ (τ). In view of this and (17.3.7), as τ
runs along Ir, λ (τ) is close to the large semicircle that runs from eπr/16 to−eπr/16
through ieπr/16. Continuing up the relevant portion ofΓ3, λ reaches a small negative
value. On Ir, the image is close to a semicircle of radius 1/2r, ending with a small
positive value. Thus λ maps the interior of the cutoff domain Ωr onto a domain that,
as r→ ∞, covers C+, and the map is bijective. ��

Theorem 17.3.2. The elliptic modular function λ is a countably-many to one con-
formal map of C+ onto C\{0,1}.

Proof: We know that λ is a holomorphic map from C+ to C \ {0,1}, and that λ is
conformal on Ω , continous on the closure of Ω , and real on the boundary of Ω .
Therefore, on the image of Ω under the reflection across a piece Γj of the bound-
ary, λ is given by the reflection of λ on Ω and is a conformal map onto C−. This
boundary-crossing procedure can be continued across each of the smooth parts of
the boundary of the image of Ω , leading to conformal maps to C+, and so on.
Because we already have λ as a globally defined function on C+, we know that all
these continuations are simply part of λ . The only fact that needs to be checked is
that the union of all these reflections, together with their boundaries in C+, is all
of C+. Since reflections across vertical boundaries mean that the union under con-
sideration is invariant under translation by 1, the question is what happens under
reflections through the curved boundaries.

Reflection through a circle of radius r with center p ∈ R is given by the map

z → p+
r2

z− p
(17.3.11)

which fixes the circle |z− p| = r and maps ∞ to p. This map is a linear fractional
transformation followed by complex conjugation, so it takes the vertical lines {z :
Rez = p± r} to the circles |z− (p± 1

2 r)| = 1
2 r. The process starts with reflection

across a lower boundary made up of semicircles with radius 1/2 and centers at
p = n+ 1

2 , n any integer. After k iterations, the lower boundary is formed by non-
overlapping semicircles with radius 2−k−1 and centers on the real line. Therefore
the union of all the images is all of C+. ��

Remark. In view of Theorems 17.3.1 and 17.3.2, the results of Section 6.5 imply
that λ is a quotient of two solutions of the hypergeometric equation (6.5.4). See
Exercise 18 of Chapter 6.

The exponential function is an example of an entire function that takes all values
except 0. (In fact each such function is a constant times the exponential of an entire
function.)

Theorem 17.3.3. (Picard) If an entire function f omits two values, it is constant.
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Proof: Suppose that f (z) is never a or b, with a �= b. Let

g(z) =
f (z)−a
f (z)−b

.

Then g omits 0 and 1. It follows that the composition λ−1 ◦g is well-defined, though
multi-valued. However we may choose a single-valued branch. If Dr(0) is a suffi-
ciently small disk centered at the origin, we may choose a branch G0 of λ−1 ◦g that
is defined and holomorphic in the disk. The function G0 can be continued analyti-
cally along any curve in C. Since C is simply connected, the monodromy theorem,
Theorem 1.7.2, says that these continuations define an entire function G. Since the
range of G is included in C+, it follows that exp(iG) is bounded, hence constant.
Therefore G is constant, so g= λ ◦G is constant, so f is constant. ��

Remarks. Theorem 17.3.3 is often called Picard’s “little” theorem, in contrast to
Picard’s “big” theorem, which he proved later: a function with an essential singu-
larity cannot omit more than one point. This requires a somewhat closer look at
the process of successive reflection across edges. The proof is outlined in Exercises
12–24.

17.4 Automorphic functions; the J function

An automorphic function of one complex variable is a meromorphic function f ,
defined on a domain Ω , that is invariant under some infinite discrete group of linear
fractional transformations that map Ω onto itself:

f (g(z)) = f (z), z ∈ Ω , g ∈ G.

Examples, with Ω =C, are trigonometric functions and elliptic functions, invariant
under one or two groups of translations.

The elliptic modular function λ , defined on C+, has period 1 and transforms
nicely under the modular group. Moreover, λ is invariant under those transforma-
tions in the modular group that are equivalent mod 2 to the identity transformation,
such as

g(τ) =
5τ +4
6τ +5

,

so λ is a different type of automorphic function, invariant under a non-commutative
infinite transformation group.

To find a function invariant under the full modular group, we look for a function
that, like λ , is a function of the roots e j. For full invariance, we need a symmetric
function of the roots. The simplest such functions are the elementary symmetric
polynomials
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e1+ e2+ e3 = 0, 4(e1e2+ e2e3+ e3e1) =−g2, 4e1e2e3 = g3.

If we want a function that is a function of τ = ω2/ω1, we can do as before and
take advantage of the homogeneity property of the e j by arranging a quotient of
expressions that have the same homogeneity. If we try this with g2, which has degree
−4, and g3, which has degree −6, we are led to consider g23 and g32, each of degree
−12. Thus it can be argued that the simplest such functions of τ have the form

F(τ) =
ag32+bg23
cg32+dg23

, Imτ > 0. (17.4.1)

This function will be holomorphic in C+ if the denominator is never zero. Now the
fact that the e j are distinct means that the discriminant of the polynomial Q(t) =
4t3−g2t−g3 does not vanish. This leads us to take as denominator the discriminant
g32−27g23, and a numerator as simple as possible. The result is the J-function

J(τ) =
g32

g32−27g23
. (17.4.2)

Arguments similar to the one used for λ show that the set Δ of (17.2.2) is a
fundamental domain for J, and that J is a conformal map from the closure of Δ onto
C+.

Another way to create a function that is symmetric in the roots is to take all the
forms of λ that are obtained by the action of the modular group and take a symmetric
function of these forms. They can be enumerated as coming from

e3− e2
e1− e2

,
e1− e3
e2− e3

,
e2− e1
e3− e1

,
e1− e2
e3− e2

,
e2− e3
e1− e3

,
e3− e1
e2− e1

.

In terms of λ these are, respectively,

λ ,
λ −1

λ
,

1
1−λ

,
1
λ
,

λ
λ −1

, 1−λ .

One of the simplest symmetric functions is obtained by adding 1 to each term and
taking the product:

F(τ) = (1+λ )
(
1+

λ −1
λ

)(
1+

1
1−λ

)(
1+

1
λ

)(
1+

λ
λ −1

)
(1+1−λ )

= − [(−3e2)(−3e3)(−3e1)]2

[(e1− e2)(e2− e3)(e3− e1)]2

= =− 364−2g23
[(e1− e2)(e2− e3)(e3− e1)]2

. (17.4.3)

After some calculation, using e1+ e2+ e3 = 0, the denominator is
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−27(e1e2e3)2−4(e1e2+ e2e3+ e3e1)3 =
g32−27g23

16
. (17.4.4)

Thus

F(τ) =
(27)2g23
27g23−g32

= 27[1− J(τ)], (17.4.5)

so

J(τ) = 1− F(τ)
27

=
4
27

(1−λ +λ 2)3

λ 2(1−λ )2
. (17.4.6)

Since the function J(τ) has period 1, we expect it to have a Fourier expansion

J(τ) =
∞

∑
−∞

ant
n, t = e2πiτ .

When τ is in C+, |t| < 1. Therefore we expect only finitely many negative powers
of t. In fact it is known that

J(τ) =
1

1728

[
1
t
+744+196884t+21493760t2+ . . .

]
. (17.4.7)

Here we sketch the calculation of the first two terms of this expansion. The start-
ing point for calculating (17.4.7) is the calculation of the Fourier expansions of

g2(τ) = 60 ∑
(m,n) �=(0,0)

1
(m+nτ)4

, g3 = 140 ∑
(m,n) �=(0,0)

1
(m+nτ)6

. (17.4.8)

Now

∞

∑
(m,n) �=(0,0)

1
(m+nτ)2k

= 2
∞

∑
m=1

1
m2k +

∞

∑
m=−∞

∑
n �=0

1
(m+nτ)2k

= 2ζ (2k)+2
∞

∑
n=1

∞

∑
m=−∞

1
(m+nτ)2k

. (17.4.9)

The values of the (Riemann) ζ -function here are

ζ (4) =
π4

90
, ζ (6) =

π6

945
. (17.4.10)

Calculation of the corresponding sums in (17.4.8) starts with the identity

π cotπu =
1
u
+

∞

∑
n=1

(
1

u−n
+

1
u+n

)

= lim
N→∞

N

∑
n=−N

1
u−n

. (17.4.11)
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In fact the difference between the two sides is entire, periodic with period 1, and
vanishes as u→ ∞ in a period strip like {z : |Rez| ≤ 1/2}, so the difference is zero.
Now u ∈ C+ implies that |eiπu|< 1, so

π cotπu = πi
eiπu+ e−iπu

eiπu− e−iπu

= πi
w+1
w−1

= −πi(1+w)(1+w+w2+ . . .)
= −πi(1+2w+2w2+ . . .), w= e2iπu. (17.4.12)

Combining (17.4.11) and (17.4.12) and differentiating gives

6
∞

∑
m=−∞

1
(m+u)4

= 16π4(w+8w2+27w3+ . . .); (17.4.13)

120
∞

∑
m=−∞

1
(m+u)6

= −64π6(w+32w2+243w3+ . . .). (17.4.14)

We can now combine (17.4.8), (17.4.9), (17.4.10), (17.4.13), and (17.4.14) to obtain

g2(τ) =
4π4

3
[1+240(t+9t2+ . . .)]; (17.4.15)

g3(τ) =
8π6

27
[1−504(t+33t2+ . . .)]. (17.4.16)

In turn, these lead to

J(τ) =
1+720t+ . . .

1728(t−24t2+ . . .
), (17.4.17)

which gives the first two terms of the expansion (17.4.7).

Exercises

1. Check the various assertions in the proof of Proposition 17.2.1.
2. Show that R and T generate the modular group. (Hint: use R, T , and T−1 to

reduce the largest absolute value among the entries of a given g.)
3. Verify (17.3.9). (Since lines or circles are taken to lines or circles, it is enough

to track what happens to the points 0, ∞, 1+ i, 1, (1+ i)/2, and i.)
4. Verify the assertions in (17.3.10). (Note that λ is positive on the positive imag-

inary axis and is never 0 or 1.)
5. Show that if F has the form (17.4.1) and has no poles in C+, F must be of the

form F(τ) = a1J(τ)+b1.
6. Verify (17.4.4).
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7. With P(z) = 4z3−g2z−g3, find polynomials Qj, Pj such that the Qj have pos-
itive leading coefficient and

P(z) = P′(z)Q1(z)+P1(z); P′(z) = P1(z)Q1(z)+P0(z),

where Pj has degree j. Show that a polynomial that divides both P and P′ also
divides P1 and P0. Conclude that P has a multiple root if and only if P0 = 0. This
gives a second derivation of the discriminant.

8. Verify (17.4.13) and (17.4.14).
9. Verify (17.4.15) and (17.4.16).
10. Verify (17.4.17).
11. Verify:

21493760 = 1+196883+21296876,

864299970 = 2 ·1+2 ·196883+21296876+842609326.

(See (17.4.7) and the Addendum.)

The remaining exercises outline Picard’s proof of his “big” theorem: a function
with an essential singularity cannot omit more than one finite value.

12. Use Exercise 2 and (17.2.4), (17.2.5) to show that if B belongs to the modular
group, then

λ ◦B(z) =
aλ (z)+b
cλ (z)+d

where a,b,c,d are integers and ad−bc= 1 if Imλ (z) and Imλ (B(z)) have the
same sign, and ad−bc=−1 otherwise.

13. Show that each of the reflections that are used to extend Ω so as to cover all of
C+ has the form

z → az+b
cz+d

, (17.4.18)

where a,b,c,d are integers and ad− bc = −1. (In fact the reflections through
circular arcs, given by (17.3.11), start with r = 1/2 and 2p an integer, and sub-
sequent reflections have r = 2−k and 2k p an integer. Also, reflection through a
line {z : Rez= n} is given by

z → 2n− z.)

14. Show that the composition of two of the reflections from Exercise 13 belongs
to the modular group.

15. Suppose Ω1 is one of the domains that is obtained from Ω by an even number
of reflections through sides. Show that the restrictions of λ are related by

λ
∣∣
Ω1

= A
(
λ

∣∣
Ω

)
(17.4.19)

where A is a member of the modular group.
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16. Suppose that Ω1 and Ω2 are domains obtained from Ω by an odd number of
reflections through sides. Show that the respective restrictions of λ are related
by

λ
∣∣
Ω2

= A
(

λ
∣∣
Ω1

)
(17.4.20)

where A is a member of the modular group.
17. Recall that we are considering the modular group to consist either of matrices or

of the corresponding linear fractional transformations; the context should make
clear which is meant. Suppose that the matrix A belongs to the modular group
and is not the identity or its negative. Show that the sum of the eigenvalues is
real, and there are exactly three possibilities:

(a) A has two complex eigenvalues eiθ , e−iθ , 0< θ < π .
(b) A has two distinct real eigenvalues μ , 1/μ .
(c) A has a single eigenvalue 1 or −1.

18. With A as in the Exercise 17, show that in case (a) or case (b), there is a matrix
S such that S−1AS is diagonal. Show that in case (c) there is a matrix S such
that S−1AS = T , where T is given in (17.2.3). In case (a), one may assume
S(C+) =D, the unit disk; in cases (b) and (c), one may take S(C+) =C+. Note
that S−1AS= B is equivalent to AS= SB,detS �= 0.

19. Suppose that f has an essential singularity at a point z0. Suppose that f does not
take two distinct values a, b. Show that there is a function g with an essential
singularity at ∞ such that g does not take the values 0, 1.

20. Suppose that g is holomorphic in a neighborhood N = {z : |z| > R} of ∞ and
does not take the values 0 or 1. Choose a determination G of λ−1 ◦ g that is
holomorphic in the (simply connected) domain N1={z : |z|> R,z /∈ [0,∞)}.
(a) Suppose z ∈ N1. Let G+(z) be the value obtained by continuing G in the
positive direction from z around the circle of radius |z| until one returns to z.
Show that

G+(z) = AG(z), for some A in the modular group.

(b) Show that A in (a) is the same for every z ∈ N1. (In fact A depends continu-
ously on z, but elements of the modular group are isolated points.)

21. Suppose that A in Exercise 20 is the identity. Show ∞ is not an essential singu-
larity of g, e.g. via the Casorati–Weierstrass theorem.

22. Suppose that A in Exercise 20 is of type (a) from Exercise 17, and choose S so
that S−1AS is diagonal. This can be done so that

SG+ = e2iθSG, 0< θ < 2π.

Let H(z) = z−θ/πSG(z). Show that H is bounded and holomorphic in N = {z :
|z| > R} and vanishes at ∞. Use this to conclude that ∞ is not an essential sin-
gularity of g= λ ◦G.

23. Suppose that A in Exercise 20 is of type (b) from Exercise 17, and choose S :
C+ → D so that S−1AS is diagonal. This can be done so that
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SG+ = μ2SG, μ > 1.

Let G[n] denote the result of continuing G along n counterclockwise circuits
around the origin: G[2] = (G+)+, etc. Show that

μ2nSG = [SG][n] = zn logμ/πiH(z),

where H is holomorphic in N. Choose m large enough so that z0 = em/ logμ

belongs to N. Then
μ2nSG(z0) = emn/πiH(z0).

The left side is in C+; show that the right side cannot be in C+ for any n.
24. Suppose, finally, that A in Exercise 20 is of type (c) from Exercise 17. Then

there is S : C+ → C+ such that

SG+ = SG+1.

Show that H(z) = SG(z)− logz/2πi is holomorphic in N. Then

|exp(iH(z))| = |z−1/2π exp(iSG(z))| ≤ |z|−1/2π ,

so ImH(z) ≥ 0 in N, which implies that ∞ is not an essential singularity of
H (Casorati–Weierstrass). Use this to conclude that ∞ cannot be an essential
singularity of g= λ ◦G. This is Picard’s “big” theorem.

Addendum: Moonshine

There is a renormalized version of J:

j(τ) = (12)3J(τ)−744 =
(12)3g2(τ)3

g2(τ)3−27g3(τ)2
−744.

Since j(τ) has period 1 and is bounded as Imτ →+∞, it has a Fourier expansion

j(τ) = q−1+196884q+21493760q2+864299970q3

+20245856256q4+ . . . ,

where q= q(τ) = e2πiτ . (The reason for multiplying by (12)3 in the first equation is
to make the leading term q−1 rather than q−1/1728. The reason for subtracting 744
is to kill the constant term in the expansion; obviously these modifications do not
affect the group invariance property). The functions J and j have long been known
to number theorists and algebraic geometers.

Group theorists spent decades, starting in the 1960s, classifying the finite simple
groups. These fall into several infinite families, together with 26 others – the spo-
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radic groups. The largesty of the sporadic groups, known as the “monster,” has order

246 ·320 ·59 ·76 ·112 ·133 ·17 ·19 ·23 ·29 ·31 ·41 ·47 ·59 ·71.
It has irreducible representations on spaces of dimension

1, 196883, 21296876, 842609326, 18538750076, 19360062527, . . . .

It was noted by McKay that

196884= 1+196883,

and then by Thompson that

21493760 = 1+196883+21296876,

864299970 = 2 ·1+2 ·196883+21296876+842609326,

20245856256 = 2 ·1+3 ·196883+2 ·21296876
+842609326+19360062527.

There was a general feeling among group theorists and others that these are not
simply numerical coincidences. For (much) more on this and related topics, such as
vertex algebras and quantum gravity, see Duncan, Griffin, and Ono [39].

Remarks and further reading

The theory of automorphic functions and automorphic forms is a large and active
area of current research, with far-reaching applications, among them the Langlands
program: see the references at the end of Chapter 12.

For classical connections to complex analysis, see Siegel [128]. For much further
study of the theory in one complex variable, see Lehner [85], [86]. For other modern
connections, see Dou and Zhang [37], Lozano-Robledo [94] and Venkov [137]. For
some history, see Roy [122].



Chapter 18
Integral transforms

The Cauchy integral formula

f (z) =
1
2πi

∫
Γ

f (ζ )
ζ − z

dζ ,

gives the value at z of a function f that is holomorphic in a domain that contains z
and is continuous on the boundary Γ . This formula can be considered as a particular
case of an integral transform that takes a given function f defined on a complex
curve Γ to the function

CΓ f (z) =
1
2πi

∫
Γ

f (ζ )
ζ − z

dζ , z /∈ Γ . (18.0.1)

What happens if f is not the boundary value of a function that is holomorphic inside
the curve? This question leads naturally to the study of a second integral transform
associated with the curve.

In the first section we introduce the concept of an approximate identity and also
a special class of functions that are well-adapted to the consideration of various
integral transforms.

In the second section we consider two integral transforms. One is the Cauchy
transform (18.0.1) when Γ = R. The second is the Hilbert transform, which is
related to the values of the Cauchy transform at R.

These considerations lead naturally to the Fourier transform, and to the spaces
L1 and L2, which are the subject of the remaining sections.

18.1 Approximate identities and Schwartz functions

A useful tool for approximation of functions is an approximate identity. This occurs
implicitly in Section 4.2 for the case of the interval (−π,π). In the case of the
line, an approximate identity is a family of continuous functions {Gε}0<ε≤1, or a
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sequence of such functions {Gn}∞
n=1, with two properties. We state the properties

here for the case ε → 0; the reader may easily translate to the case n→ ∞.

Gε(x) ≥ 0; (18.1.1)∫ ∞

−∞
Gε(x)dx = 1, (18.1.2)

and for each δ > 0,

lim
ε→0

∫
|x|>δ

Gε(x)dx = 0. (18.1.3)

Thus, as ε → 0, Gε becomes more and more concentrated near the origin.

The example

Gε(x) =
ε

π(x2+ ε2)
(18.1.4)

will occur in connection with the Cauchy transform. A second, much-used example
is the family of Gaussian probability densities

Gε(x) =
e−x2/2ε
√
2πε

. (18.1.5)

Many function spaces can be described as the completion of some class of func-
tions F with respect to a metric

d( f ,g) = || f −g||
defined by a norm || · ||. In this chapter we consider the analogue for R of the func-
tions on the interval (−π,π) that are considered in Section 1.10. The norms in this
case are

|| f ||p =
[∫ ∞

−∞
| f (x)|p dx

]1/p
, 1≤ p< ∞.

We take the class F to consist of continuous f :R→C such that f vanishes outside
some bounded interval (depending on f ). For 1 ≤ p < ∞ the completion is the Lp

space Lp(R). Similarly the space C0(R) of continuous functions f with limit 0 as
|x| → ∞ is the completion of F with respect to the norm

|| f ||∞ = sup
x∈R

| f (x)|.

Suppose that f and g are two continuous functions from R to C, at least one of
which vanishes outside some bounded interval. The convolution f ∗g is the function
defined by

f ∗g(x) =
∫ ∞

−∞
f (x− y)g(y)dy. (18.1.6)

Convolution is commutative:

f ∗g(x) = g∗ f (x); (18.1.7)
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see Exercise 1.

Proposition 18.1.1. Suppose that {Gε} is an approximate identity and that f :R→
C is continuous and has limits f (x)→ a± as x→±∞. Then the convolution f ∗Gε
converges uniformly to f as ε → 0.

Proof: Properties (18.1.1) and (18.1.2), imply that

| f ∗Gε(x)− f (x)| =
∣∣∣∣
∫ ∞

−∞
[ f (x− y)− f (x)]Gε(y)dy

∣∣∣∣
≤ sup

|y|≤δ
| f (x− y)− f (x)|+2sup

x
| f (x)|

∫
|y|>δ

Gε(y)dy.

Under our assumption, f is bounded and uniformly continuous. Therefore the first
term in the last line is small for small δ , uniformly with respect to x, while property
(18.1.3) implies that for a given δ , the second term is small for small ε , uniformly
with respect to x. �

Functions of the Schwartz class S are particularly useful in connection with the
study of the Fourier transform. A function f :R→C belongs to S if each derivative
is continuous and decays faster than each power of 1/|x| as |x| → ∞. This means
that for each k and n,

sup
x∈R

|x|n| f (k)(x)| < ∞. (18.1.8)

The Gaussian functions (18.1.5) are examples. In fact

ex
2/2ε >

x2n

(2ε)n n !

so
e−x2/2ε = O(x−2n) as |x| → ∞, all n.

Each derivative of e−x2/2ε has the form p(x)e−x2/2ε , where p is a polynomial, so
derivatives also satisfy such estimates.

We can use the approximate identity (18.1.5) to approximate by functions in S.

Theorem 18.1.2. Suppose that f : R → C is continuous, and vanishes outside a
bounded interval. Then there are Schwartz class functions fε such that fε converges
uniformly to f , as ε → 0, and also converges to f with respect to each of the Lp

norms || ||p and the uniform norm || ||∞.

Proof: Let {Gε} be the approximate identity (18.1.5). By Proposition 18.1.1 the
functions fε = Gε ∗ f converge uniformly to f . Suppose that f (x) = 0 for |x| ≥ A.
Then

fε(A+ t) =
∫ A

−A
f (y)Gε(t+A− y)dy =

∫ 0

−2A
f (u+A)Gε(t−u)du.
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For t ≥ 0 and u≤ 0, Gε(t−u) is maximal at u= 0. Therefore for t ≥ 0,

| fε(A+ t)| ≤ CGε(t) =
C√
2επ

e−t2/ε , C = 2Asup
x
| f (x)|. (18.1.9)

The same estimate is valid for | fε(−A− t)|, t ≥ 0. The same argument applies to

derivatives [ f ∗Gε ](n) = f ∗ (G(n)
ε ). It follows that each fε belongs to S. Moreover

Gε(t) ≤ 1√
2επ

· 2ε
t2

=
[
2ε
π

]1/2
· 1
t2
. (18.1.10)

We know that fε converges uniformly to f on the interval [−A−1,A+1]. It follows
from (18.1.9) and (18.1.10) that for each 1≤ p< ∞,

lim
ε→0

∫
|x|>A+1

| fε(x)|p dx = 0.

Therefore the fε converge to f with respect to the Lp norm. The same is true with
respect to the norm || ||∞. �

By definition, F is dense in Lp(R) andC0(R), so Theorem 18.1.2 has the follow-
ing consequence.

Corollary 18.1.3. Schwartz functions are dense in C0(R) and in Lp(R), 1≤ p< ∞.

18.2 The Cauchy Transform and the Hilbert transform

The Cauchy transform C f of f ∈ S is defined to be

C f (z) =
1
2πi

∫ ∞

−∞

f (x)
x− z

dx, z /∈ R, (18.2.1)

It is easily checked thatC f is holomorphic in each half plane C± = {z :±Imz> 0}.
We will analyze the boundary values ofC f (z) as z approaches R from C+ or C−

by considering the two linear combinations

C f (x+ iε)−C f (x− iε), (18.2.2)

and
C f (x+ iε)+C f (x− iε) (18.2.3)

as ε → 0+.

Theorem 18.2.1. For f ∈ S and z ∈ C+,

lim
z→x

[C f (z)−C f (z̄)] = f (x), x ∈ R, (18.2.4)
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uniformly on R.

Proof: The first step is to prove uniform convergence along vertical lines, i.e. that
the difference (18.2.2) converges uniformly to f (x). Given ε > 0,

C f (x+ iε)−C f (x− iε) =
1
2πi

∫ ∞

−∞

{
1

t− x− iε
− 1

t− x+ iε

}
f (t)dt

=
1
π

∫ ∞

−∞

ε f (t)
(t− x)2+ ε2

dt

= f ∗Gε(x),

where
Gε(x) =

ε
π(x2+ ε2)

. (18.2.5)

Now {Gε} is an approximate identity (Exercise 2). The argument of Proposition
18.1.1 extends easily to the case of f ∈ S. Thus the difference (18.2.2) converges
uniformly to f .

An integration by parts shows that the derivative

[C f ]′(z) =
1
2πi

∫ ∞

−∞

f (x)
(x− z)2

dx =
1
2πi

∫ ∞

−∞

f ′(x)
x− z

dx.

Thus the derivative of the difference (18.2.2) converges uniformly to f ′. In particu-
lar, the derivative is uniformly bounded. The uniform convergence of (18.2.2) is an
easy consequence (Exercise 3). �

As we shall see, examination of the limit of the sum (18.2.3) leads to the Hilbert
transform of f ∈ S, defined as a “principal value” integral

H f (x) = p.v.
∫ ∞

−∞

f (x− y)
y

dy ≡ lim
δ→0+

∫
|y|>δ

f (x− y)
y

dy. (18.2.6)

The integrand is integrable at ∞, so it is enough to look at the integral for δ < |y|< 1.
Because 1/y is an odd function, its integral over this range is zero. Therefore

∫
δ<|y|<1

f (x− y)
y

dy =
∫

δ<|y|<1

f (x− y)− f (x)
y

dy.

As a Schwartz function, f has a bounded derivative, so the second integrand is
bounded for |y| ≤ 1, uniformly with respect to x. Thus the limit (18.2.6) exists.

Theorem 18.2.2. For f ∈ S and z ∈ C+,

lim
z→x

[C f (z)+C f (z̄)] =
i
π
H f (x), x ∈ R, (18.2.7)

uniformly on R.
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Proof: Again the first step is to prove uniform convergence along vertical lines, i.e.
that (18.2.3) converges uniformly. Given ε > 0,

C f (x+ iε)+C f (x− iε) =
1
2πi

∫ ∞

−∞

{
1

t− x− iε
+

1
t− x+ iε

}
f (t)dt

=
1
πi

∫ ∞

−∞

t− x
(t− x)2+ ε2

f (t)dt

=
i
π

∫ ∞

−∞
f (x− y)

y
y2+ ε2

dy,

so

C f (x+ iε)+C f (x− iε)− i
π
H f (x) =

i
π
p.v.

∫ ∞

−∞
f (x− y)

{
y

(y2+ ε2)
− 1

y

}
dy

= − i
π
p.v.

∫ ∞

−∞

ε2 f (x− y)
y(y2+ ε2)

dy.

We may use the same trick as before. The function y/(y2+ ε2) is integrable with
respect to y and is odd, so the preceding principal value integral is

i
π

∫ ∞

−∞

f (x− y)− f (y)
y

· ε2

y2+ ε2
dy.

Since f ′ is bounded, this integral is dominated by

∫ ∞

−∞

ε2

y2+ ε2
dy = ε

∫ ∞

−∞

dx
1+ x2

=
ε
π
.

Thus (18.2.7) converges uniformly. As in the previous proof, the derivative of
(18.2.3) is (18.2.3) with f ′ in place of f . Uniform convergence of (18.2.3) follows
from the boundedness of this derivative. �

For z not real,

C f (z) =
1
2
[C f (z)−C f (z̄)]+

1
2
[C f (z)+C f (z̄)] .

Therefore Theorems 18.2.1 and 18.2.2 have the following consequence.

Corollary 18.2.3. (Plemelj–Sokhotski formulas) For f ∈ S, the function C f (z) for
Imz > 0 extends continuously to the closure C+ ∪R with value C+ f (ξ ), ξ ∈ R.
Similarly, C f (z) for Imz< 0 extends continuously to the closure C−∪R, with value
C− f (ξ ), ξ ∈ R. These one-sided limiting values are given by

C+ f (x) =
1
2
f (x)+

i
2π

H f (x); C− f (x) = −1
2
f (x)+

i
2π

H f (x). (18.2.8)
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Remark. The condition that f belongs to S can be weakened considerably. See
Exercises 5 and 6 for conditions that are closer to being minimal.

18.3 The Fourier transform

Again we assume throughout that the function f belongs to the Schwartz class S. Let
us take a second look at the Cauchy transform of f . Note that if y ∈R and Imz> 0,
then

1
i(y− z)

=
∫ ∞

0
ei(z−y)ξ dξ , (18.3.1)

while if Imz< 0,
1

i(y− z)
= −

∫ 0

−∞
ei(z−y)ξ dξ . (18.3.2)

Setting z= x± iε , ε > 0, we have

C f (x+ iε) =
1
2π

∫ ∞

−∞

∫ ∞

0
e−εξ ei(x−y)ξ f (y)dξ dy

and

C f (x− iε) = − 1
2π

∫ ∞

−∞

∫ 0

−∞
eεξ ei(x−y)ξ f (y)dξ dy.

Therefore our previous result about convergence on vertical lines says that

f (x) =
1
2π

lim
ε→0+

∫ ∞

−∞

∫ ∞

−∞
e−ε |ξ |ei(x−y)ξ f (y)dξ dy.

Under our assumption on f the integrand is absolutely integrable. We may inter-
change the order of integration and obtain

f (x) =
1
2π

lim
ε→0+

∫ ∞

−∞
e−ε |ξ |eixξ

{∫ ∞

−∞
e−iyξ f (y)dy

}
dξ . (18.3.3)

For now we define the Fourier transform of f to be the function

f̂ (ξ ) =
∫ ∞

−∞
e−ixξ f (x)dx. (18.3.4)

(There are a number of different normalizations for the Fourier transform. They take
the form

f̂ (ξ ) = A
∫ ∞

−∞
eiBxξ f (x)dx,

usually with B=±1 or±2π and A= 1, A= 1/(2π), or A= 1/
√
2π . In fact we will

use a second normalization later in this chapter and a third in Chapter 20.)

As we shall see, the assumption f ∈ S implies that f̂ is in S. In particular | f̂ | is
integrable and (18.3.3) becomes the inversion formula
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f (x) =
1
2π

∫ ∞

−∞
eixξ f̂ (ξ )dξ . (18.3.5)

The transformation

ǧ(x) =
1
2π

∫ ∞

−∞
eixξg(ξ )dξ (18.3.6)

is called the inverse Fourier transform of g.

Our assumption on f implies that the formula (18.3.4) can be differentiated to
give

[ f̂ ]′(ξ ) =
∫ ∞

−∞
e−ixξ [−ix f (x)]dx. (18.3.7)

Multiplying (18.3.4) by iξ and integrating by parts gives

iξ f̂ (ξ ) =
∫ ∞

−∞
e−ixξ f ′(x)dx. (18.3.8)

It follows that products of polynomials with f̂ and its derivatives are bounded. The
same considerations apply to the inverse transform. Thus we have the following:

Proposition 18.3.1. The Fourier transform, or the inverse Fourier transform, of a
Schwartz function is a Schwartz function.

18.4 The Fourier transform for L1(R)

We may consider the space L1 = L1(R) to be the completion of S with respect to the
metric

d( f ,g) = || f −g||1 =
∫ ∞

−∞
| f (x)−g(x)|dx.

The elements of L1 can be considered as equivalence classes of Cauchy sequences
{ fn} from S. Two such sequences { fn}, {gn} are equivalent if || fn− gn|| → 0. An
element f ∈ S can be identified with the constant sequence fn = f , and thus taken to
belong to L1. According to Theorem 18.1.2, a function that is constant on a bounded
interval and vanishes outside that interval is the limit of such a sequence, so L1

contains every piecewise constant function that vanishes for large |x|. Conversely
each function in S can be approximated in the L1 sense by such functions, so such
piecewise constant functions are dense in L1.

(Technically the elements of L1 are equivalence classes of integrable Lebesgue-
measurable functions, where two such functions are equivalent if they differ only on
a set of measure zero. We shall write elements of L1 as though they are functions,
but for the purposes of this chapter no knowledge of measure theory is required:
every argument can be reduced to a statement about piecewise constant functions or
functions in the space S.)
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Proposition 18.4.1. The Fourier transform extends to a continuous map from L1(R)
into C0(R).

Proof: Suppose that f belongs to S. Then

| f̂ (ξ )| ≤
∫ ∞

−∞
|e−ixξ f (x)|dx =

∫ ∞

−∞
| f (x)|dx = || f ||1. (18.4.1)

Since f̂ is also a Schwartz function, f belongs toC0(R). Density of S, together with
(18.4.1), implies the extension property. �

Remark. Not every element of C0(R) is the Fourier transform of an element of
L1(R): Exercise 7.

The operation of convolution, (18.1.6) clearly carries over to pairs f , g of
Schwartz class functions. It is not difficult to show that f ∗g is bounded and

[ f ∗g]′ = f ′ ∗g = f ∗g′,
while if f1(x) = x f (x) and g1(x) = xg(x), then

x [ f ∗g](x) = f1 ∗g(x)+ f ∗g1(x).
Iterating, it follows S is closed under convolution.

Proposition 18.4.2. Convolution extends by continuity to all f , g in L1(R).

Proof: For f and g in S,

|| f ∗g||1 ≤
∫ ∞

−∞

∫ ∞

−∞
| f (x− y)g(y)|dydx

=
∫ ∞

−∞
|g(y)|

{∫ ∞

−∞
| f (x− y)dx

∣∣∣∣ dy
=

∫ ∞

−∞
|g(y)| || f ||1 dy = || f ||1 ||g||1.

It follows from this inequality that if { fn} and {gn} are Cauchy sequences from S,
then fn ∗gn is a Cauchy sequence. In fact Cauchy sequences are bounded, and

|| fn ∗gn− fm ∗gm||1 = || fn ∗gn− fm ∗gn+ fm ∗gn− fm ∗gm||1
≤ ||( fn− fm)∗gn||1+ || fm ∗ (gn−gm)||1
≤ (|| fn− fm||1+ ||gn−gm||1) · sup

k
{|| fk||1+ ||gk||1}. �

Theorem 18.4.3. If {Gε} is an approximate identity and f belongs to L1, then Gε ∗ f
converges to f in L1:

lim
ε→0

||Gε ∗ f − f ||1 = 0. (18.4.2)
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Proof: It is enough to prove this for a dense subset. Suppose that f ∈ S. Then, in
view of (18.1.2),

|[Gε ∗ f ](x)− f (x)| =
∫ ∞

−∞
| f (x− y)− f (x)|Gε(y)dy

=
∫
|y|<δ

| f (x− y)− f (x)|Gε(y)dy

+
∫
|y|>δ

| f (x− y)− f (x)|Gε(y)dy

≤ δ sup
x
| f ′(x)|+2sup

x
| f (x)|

∫
|y|>δ

Gε(y)dy.

The first term in the last line is small for small δ , and for fixed δ the second term is
small for small ε . �

The space L1(R) is a ring with convolution as multiplication. It is an important
fact that the Fourier transform is an isomorphism of L1(R) into the ring C0(R) of
continuous functions with limit 0 as |x| → ∞.

Theorem 18.4.4. If f and g belong to L1(R), then the Fourier transform of the con-
volution is the product of the Fourier transforms:

f̂ ∗g(ξ ) = f̂ (ξ ) ĝ(ξ ). (18.4.3)

Proof: It is enough to prove this for a dense set of functions. Assume that f and g
belong to S. Then

f̂ ∗g(ξ ) =
∫ ∞

−∞

∫ ∞

−∞
e−ixξ f (x− y)g(y)dydx

=
∫ ∞

−∞
e−iyξg(y)

{∫ ∞

−∞
e−i(x−y)ξ f (x− y)dx

}
dy

=
∫ ∞

−∞
e−iyξg(y) [ f̂ (ξ )]dy = f̂ (ξ ) ĝ(ξ ). �

18.5 The Fourier transform for L2(R)

In working with L2, it is convenient to change the normalization so that the formulas
for the transform and the inverse transform become nearly symmetric. Thus we
change notation and set, for f , g in S,

f̂ (ξ ) =
1√
2π

∫ ∞

−∞
e−ixξ f (x)dx; (18.5.1)

ǧ(x) =
1√
2π

∫ ∞

−∞
eixξg(ξ )dξ . (18.5.2)
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We take the L2 inner product of two Schwartz class functions f and g to be the
integral

( f ,g) =
∫ ∞

−∞
f (x)g(x)dx. (18.5.3)

The associated L2 norm is

|| f ||2 = ( f , f )1/2 =
[∫ ∞

−∞
| f (x)|2 dx

]1/2
. (18.5.4)

As noted in Section 1.9, there is an associated Cauchy–Schwarz inequality

|( f ,g)| ≤ || f ||2 ||g||2. (18.5.5)

The space L2(R) is the completion of S with respect to the metric induced by
the L2 norm. As in the case of L1, various other function spaces are dense in L2,
such as piecewise constant functions, or continuous functions, that vanish outside a
bounded interval. The inner product and the Cauchy–Schwarz inequality extend to
L2(R).

The space L2(R) is especially well-suited for the Fourier transform, and con-
versely.

Theorem 18.5.1. (Plancherel theorem) The Fourier transform and the inverse trans-
form, as normalized in (18.5.1) and (18.5.2), map L2(R) onto L2(R) and preserve
the inner product and the norm.

Proof: It is sufficient to prove that for any two Schwartz class functions f and g, the
inner products satisfy

( f ,g) = ( f̂ , ĝ). (18.5.6)

But

( f ,g) =
∫ ∞

−∞

{
1√
2π

∫ ∞

−∞
eixξ f̂ (ξ )dξ

}
g(x)dx

=
∫ ∞

−∞
f̂ (ξ )

{
1√
2π

∫ ∞

−∞
e−ixξg(x)dx

}
dξ

=
∫ ∞

−∞
f̂ (ξ ) ĝ(ξ )dξ = ( f̂ , ĝ). �

Exercises

1. Verify (18.1.7), commutativity of convolution.
2. Show that (18.2.5) is an approximate identity.
3. Complete the proof of uniform convergence of (18.2.2) in Theorem 18.2.1.
4. Compute the Cauchy transform of the function f , where
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f (x) = 1, |x|< 1, f (x) = 0, |x|> 0.

5. Show that Theorem 18.2.1 is valid under the assumptions that for some con-
stants 0< α < 1, β > 0, and Cj > 0,

| f (x)− f (y)| ≤C1|x− y|α , | f (x)| ≤C2(1+ |x|)−β , all x,y in R.

(The first inequality here is known as a Hölder condition.) .
6. Show that Theorem 18.2.2 is valid under the assumptions of Exercise 5.
7. Show that the function

g(ξ ) = 1−
√
|ξ |, |ξ |< 1, g(ξ ) = 0, |ξ | ≥ 1,

is not the Fourier transform of a function in L1. (Show that the inverse Fourier
transform of g is sinx/(πx)+O(|x|−3/2) for large |x|.)

8. Suppose that f belongs to L1. Verify the following statements.

(a) If f (−x) = f (x), then f̂ (−ξ ) = f̂ (ξ ).
(b) If f (−x) =− f (x), then f̂ (−ξ ) =− f̂ (ξ ).
(c) If a> 0, the Fourier transform of f (ax) is a−1 f̂ (ξ/a).
(d) If a ∈ R, the Fourier transform of f (x+a) is eixa f̂ (ξ ).
(e) If a ∈ R, the Fourier transform of eiax f (x) is f̂ (ξ −a).

9. Find the Fourier transforms of cosx f (x) and sinx f (x) in terms of f̂ .
10. Compute the Fourier transform of the function f of Exercise 4.
11. Verify the following:

(a) The Fourier transform of 1/(1+ x2) is πe−|ξ |.
(b) The Fourier transform of e−|x| is 2/(1+ξ 2).

12. Show that the Fourier transform of the Gaussian G(x) = (2π)−1/2e−x2/2 is
e−ξ 2/2 (Hint: complete the square in the exponential, interpret the integral as
the integral over a line in the complex plane, and use Cauchy’s theorem to bring
it back to the real axis.)

13. Show that the Fourier transform of 1/coshx is π cosh(πξ/2). (Write 1/(1+
e−2x) and 1/(1+ e2x) for x > 0 and x < 0, respectively, as convergent series,
and integrate. Compare with the partial fractions expansion of cosh(πx/2).)

14. Suppose that f belongs to L2(R). Given R> 0, let

fR(x) =

{
f (x), |x|< R;

0, |x| ≥ R.

(a) Prove that each fR belongs to L1(R).
(b) Prove that || fR− f ||2 → 0 as R→ ∞.

15. In this exercise we use the L2 normalization (18.5.1), (18.5.2). The mathemat-
ical formulation of the Heisenberg uncertainty principle establishes a limit on
how tightly a function and its Fourier transform can each be concentrated near a



18.5 The Fourier transform for L2(R) 267

point. Suppose, for convenience, that f is a Schwartz function with || f ||2 = 1, so
also || f̂ ||2 = 1. Then both | f (x)|2 and | f̂ (ξ )|2 can be considered as probability
densities. The integrals

∫ ∞

−∞
x2| f (x)|2 dx,

∫ ∞

−∞
ξ 2| f̂ (ξ )|2 dξ ,

are measures of how tightly concentrated f and f̂ are near x= 0 and near ξ = 0,
respectively. (The general case, concentrations near x= a, ξ = b can be reduced
to this case; see Exercise 8 (c), (d).) The one-dimensional version of the uncer-
tainty principle is

(∫ ∞

−∞
x2| f (x)|2 dx

)
·
(∫ ∞

−∞
ξ 2| f̂ (ξ )|2 dξ

)
≥ 1

4π
. (18.5.7)

Prove (18.5.7). (Hint: Show that

1 = || f ||2 = −[
(x f , f ′)+( f ′,x f )

]
.

Then use the Cauchy–Schwarz inequality and the renormalized version of
(18.3.8).

16. Suppose that f in Exercise 15 is the Gaussian density G of Exercise 12. Show
that in this case the lower bound 1/4π in (18.5.7) is attained. (Note that the
normalizations of the Fourier transform in Exercises 12 and 15 are different.)

17. Prove the Poisson summation formula for Schwartz functions: if f is such a
function, then

∞

∑
n=−∞

f (n) =
∞

∑
m=−∞

f̂ (2mπ). (18.5.8)

Show first that

∑
|n|≤N

f (n) =
1
2π

∫ ∞

−∞
DN(ξ ) f̂ (ξ )dξ , (18.5.9)

where DN is the Dirichlet kernel

DN(ξ ) = ∑
|n|≤N

einξ =
sin([N+ 1

2 ]ξ )
sin 1

2ξ
,

and note that DN is periodic with period 2π , and its integral over the interval
(−π,π) is 2π , so that

1
2π

∫ π

−π
DN(ξ )g(ξ )dξ −g(0) =

1
2π

∫ π

−π
DN(ξ )[g(ξ )−g(0)]dξ

=
1
2π

∫ π

−π
sin([N+ 1

2 ]ξ )h(ξ )dξ

(18.5.10)
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where

h(ξ ) =
g(ξ )−g(0)

sin 1
2ξ

.

Integrate by parts to show that (18.5.10) converges to zero. The next step is
to convert the integral in (18.5.9) into a sum of integrals like that in (18.5.10),
leading to (18.5.8).

18. Use Exercise 17 and the property of the Fourier transform under translation to
prove the more general form

∞

∑
n=−∞

f (ax+n) =
1
a

∞

∑
m=−∞

f̂ (2mπ/a) .

19. Use Exercises 18 and 12 to prove Jacobi’s theta function identity (13.6.3).

Remarks and further reading

For more on the Cauchy transform and its applications, see Bell [17].

Study of the Hilbert transform leads to the study of singular integrals; see Stein
[131] and Estrada [43]. The Hilbert transform plays a role in the study of the Bel-
trami equation ∂̄ f = μ∂ z, which was mentioned earlier in connection with confor-
mal mapping. This equation plays many roles in complex analysis and partial dif-
ferential equations, see Ahlfors and Bers [6] and Astala, Iwaniec, and Martin [13].

The classic treatment of the Fourier transform is Titchmarsh [136]. There are a
number of modern textbooks, e.g. Osgood [112].



Chapter 19
Theorems of Phragmén–Lindelöf and
Paley–Wiener

The various versions of the theorem of Phragmén and Lindelöf are far-reaching
extensions, to unbounded domains, of the maximum modulus principle. The basic
conclusion is that a function holomorphic on an unbounded domain Ω , and contin-
uous on the closure, either grows very fast at infinity or is bounded by its values on
the boundary of Ω . This has a number of interesting applications. Among them are
a theorem of Hardy that characterizes the Gaussian probability distribution, and a
theorem of Paley and Wiener that characterizes the Fourier transforms of functions
that live on a bounded interval. The Paley–Wiener theorem itself was applied by
Hardy to derive a representation of certain entire functions in terms of their values
on the integers.

Section 19.1 is self-contained. Subsequent sections involve some knowledge of
the Fourier transform, as in Section 18.5.

19.1 Phragmén–Lindelöf theorems

The function
f (z) = ez, Rez≥ 0, (19.1.1)

illustrates how badly the maximum modulus principle can fail in an unbounded
domain. On the boundary, the imaginary axis, we have | f (it)|= 1, t ∈R, but f grows
exponentially on the positive real axis. The Phragmén–Lindelöf principle says that
this is the only way the maximum modulus principle can fail in a sector: the function
must grow rapidly enough in the interior.

We begin with the simplest version of this principle, which shows that the exam-
ple (19.1.1) is sharp, in terms of growth like the exponential of a power of |z|.

Theorem 19.1.1. Suppose that f is holomorphic in the half plane Ω = {z : Rez> 0}
and continuous up to the imaginary axis. Suppose also that
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| f (z)| ≤ M, Rez= 0 (19.1.2)

and suppose that for some 0 < β < 1 and some constant C,

| f (z)| ≤ Ce|z|
β
, Rez> 0. (19.1.3)

Then
| f (z)| ≤M, Rez> 0. (19.1.4)

Proof: Choose γ such that β < γ < 1. Given ε > 0, let

Fε(z) = e−εzγ
f (z), Rez> 0.

Then for z= reiθ ,
|Fε(z)| ≤ e−εrγ cosγθ | f (z)|.

If z = reiθ belongs to Ω then cosγθ ≥ cos 1
2 πγ = δ > 0. Combining this with

(19.1.3) we have

|Fε(reiθ )| ≤ Cer
β−εδ rγ

.

Since β < γ , |Fε(z)| → 0 as |z| → ∞, z ∈ Ω . It follows from the maximum modulus
theorem, Theorem 1.2.4, that |Fε | attains its maximum on the boundary:

|Fε(z)| ≤ sup
Rez=0

|Fε(z)| ≤ sup
r≥0

e−δεrγ
M ≤ M; (19.1.5)

see Exercise 1. The inequality (19.1.5) is true independent of ε > 0. Since Fε(z)→
f (z) as ε → 0, (19.1.5) implies (19.1.4). �

The same argument works on a general sector

Ωa = {z : |argz|< aπ}, 0 < a< 1. (19.1.6)

Theorem 19.1.1 is the case a= 1/2.

Theorem 19.1.2. Suppose that f is holomorphic on the sector Ωa and continuous
up to the boundary. Suppose that | f (z)| ≤M for z in the boundary, and suppose that
for some β < 1/2a and some constant C,

| f (z)| ≤ Cer
β
, z ∈ Ωa. (19.1.7)

Then
| f (z)| ≤ M, z ∈ Ωa. (19.1.8)

The proof is left as Exercise 2

The same sort of idea occurs in the proof of Theorem 23.1.1, which starts by
showing that if a function is holomorphic in a strip Ω = {z : a<Rez< b}, bounded,
and continuous on the closure, then for z ∈ Ω
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| f (z)| ≤ max{ sup
Rez=a

| f (z)|, sup
Rez=b

| f (z)|}.

19.2 Hardy’s uncertainty principle

The Gaussian probability distribution with mean zero and variance one is the func-
tion

G(x) =
1√
2π

e−x2/2.

It has the property that its Fourier transform

̂G(ξ ) =
∫ ∞

−∞
e−ixξG(x)dx

is a multiple of itself:
̂G(ξ ) = e−ξ 2/2. (19.2.1)

This is Exercise 12 of Chapter 18. (The idea is to complete the square in the expo-
nential, view the integration as occurring along a line parallel to the real axis, and
move the integration to the real axis via Cauchy’s theorem.)

Hardy [57] showed that if a function f has the property that f and its Fourier
transform are both of the order of G at infinity, then f must be a multiple of G.

Theorem 19.2.1. (Hardy) Suppose that f : R → C is integrable, and suppose that
f (x) = O(e−x2/2) as |ξ | → ∞ and ̂f (ξ ) = O(e−ξ 2/2) as |ξ | → ∞. Then f (x) =
ce−x2/2 for some constant c.

Proof: If the even part of f , fe(x) = 1
2 [ f (x)+ f (−x)], and odd part of f , fo(x) =

1
2 [ f (x)− f (−x)], are each O(e−x2/2), then so is f . Therefore we may treat the even
and odd cases separately.

Suppose first that f is even. Then ̂f is also even. Choose the constant C0 so that
for every real x, ξ ,

| f (x)| ≤ C0 e
−x2/2, |̂f (ξ )| ≤ C0 e

−ξ 2/2.

The rapid decay condition O(e−x2/2) implies that ̂f extends to an entire function

F(z) =
∫ ∞

−∞
f (x)e−ixz dx.

Then
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|F(ξ + iτ)| ≤ C0

∫ ∞

−∞
e−

1
2 x

2
exτ dx

= C0

∫ ∞

−∞
e−

1
2 (x−τ)2+ 1

2 τ2
dx

= C0
√

2π eτ2/2 = Ceτ2/2. (19.2.2)

Since F in this case is even, its Taylor expansion at the origin has only even powers
of z. Thus F(z) = φ(z2), where φ is also an entire function.

With z= reiθ , we have Im
√
z=

√
r sin(θ/2), so

|φ(reiθ )| = |F(√reiθ/2)| ≤ Cer sin2(θ/2)/2 ≤ Cer/2. (19.2.3)

For z= r > 0, since C0 <C we have

|φ(r)| = |F(√r)| = |̂f (√r)| ≤ Ce−r/2 (19.2.4)

Choose α with 0 < α < π/2 and let

w(z,α) = w(reiθ ,α) = exp

(

iz
e−iα

2sinα

)

= exp

(

ir
ei(θ−α)

2sinα

)

.

Now

ir
ei(θ−α)

2sinα
=

ir
2sinα

[cos(θ −α)+ isin(θ −α)]

= − r sin(θ −α)
2sinα

+ i
r cos(θ −α)

2sinα
.

Therefore

|w(reiθ ,α)| = exp

(

− r sin(θ −α)
2sinα

)

. (19.2.5)

In particular
|w(r,α)| = er/2, |w(re2iα ,α)| = e−r/2. (19.2.6)

Combining (19.2.5) with (19.2.3), we obtain

|w(reiθ ,α)φ(reiθ )| ≤C exp

(

r
2

[

1+
1

sinα

])

. (19.2.7)

Combining (19.2.3) and (19.2.4) with (19.2.5), we obtain

|w(r,α)φ(r)| ≤ C, |w(re2iα ,α)φ(re2iα)| ≤ C. (19.2.8)

The Phragmén–Lindelöf principle applies, giving

|w(z,α)φ(z)| ≤ C for 0 ≤ argz≤ 2α; (19.2.9)

see Exercise 6. Therefore in this sector
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|φ(reiθ )| ≤ Cexp

(

r sin(θ −α)
2sinα

)

.

For fixed θ , let α → π/2 to conclude that

|φ(z)| ≤ Ce−r cosθ/2, 0 ≤ argz< π. (19.2.10)

By continuity, this also holds for argz= π .
The half plane C− can be treated in a similar way, leading to the same estimate

(19.2.10). It follows that for each z= reiθ ,

|ez/2φ(z)| = er cosθ/2|φ(z)| ≤ C.

Therefore the entire function ez/2φ(z) is a constant c. This implies that F(z) =
ce−z2/2. In particular, the Fourier transform ̂f (ξ ) is ce−ξ 2/2. This in turn implies
that f is (c/

√
2π)e−x2/2.

Suppose now that f is odd. Then F is odd, so F(ξ )/ξ is an entire even function
that is O(e−ξ 2/2). Therefore, by the previous argument, F(ξ )/ξ is a constant mul-
tiple of e−ξ 2/2. Then eξ 2/2F(ξ )/ξ is entire and is O(1/|ξ |), so F = 0 and f = 0.
�

Corollary 19.2.2. Suppose that f : R → C is integrable, and suppose that f (x) =
O(e−ax2/2) as |x| → ∞ and ̂f (ξ ) = O(e−bξ 2/2) as |ξ | → ∞, where a and b are
positive. If ab> 1 then f = 0.

The proof is left as Exercise 7.

Theorem 19.2.1 and Corollary 19.2.2 are known as Hardy’s uncertainty princi-
ple. Like the Heisenberg uncertainty principle, Hardy’s principle has to do with the
extent that a function and its Fourier transform can both tail off rapidly, and thus can
simultaneously be concentrated on bounded sets.

. .

19.3 The Paley–Wiener Theorem

The Fourier transform of a function that vanishes outside a bounded interval is an
entire function. The theorem of Paley and Wiener [115] characterizes such trans-
forms. The Fourier transform was defined in Chapter 18 for functions in L1(R).
Suppose that f belongs to L1(R) and that f (x) = 0 for |x| > A. The Fourier trans-
form ̂f extends to an entire function

F(z) =
∫ A

−A
f (x)e−ixz dx (19.3.1)

that satisfies the inequality
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|F(z)| ≤
∫ A

−A
| f (x)|eA|z| dx = O(eA|z|). (19.3.2)

Such an entire function F is said to be of exponential type. The greatest lower bound
of the constants A> 0 such that (19.3.2) is valid is said to be the type of F . The space
of entire functions of type at most A, i.e. functions F such that

|F(z)| = O(e(|A|+ε)|z|), (19.3.3)

for every ε > 0, is denoted EA.
The theorem of Paley and Wiener involves the extension of the Fourier transform

to functions f in L2(R). Suppose that f is such a function, and suppose that f (x) = 0
for |x|> R. Then the Cauchy–Schwarz inequality shows that f belongs to L1(R):

∫ ∞

−∞
| f (x)|dx =

∫ R

−R
| f (x)|dx ≤

[
∫ R

−R
| f (x)|2 dx ·

∫ R

−R
1dx

]1/2

=
√

2R || f ||2.

As noted in Section 18.5, in the context of L2(R), it is convenient to choose
1/
√

2π as the normalizing constant for the Fourier transform. Then the transform
and its inverse are the same, up to a sign in the exponential:

̂f (ξ ) =
1√
2π

∫ ∞

−∞
f (x)e−ixξ dx; ǧ(x) =

1√
2π

∫ ∞

−∞
g(ξ )eixξ dξ .

Moreover the inner products and norms are related by

( f ,g) ≡
∫ ∞

−∞
f (x)g(x)dx =

∫ ∞

−∞
̂f (ξ ) ĝ(ξ )dξ ≡ (̂f , ĝ). (19.3.4)

Therefore
|| f ||2 = ||̂f ||2 (19.3.5)

Theorem 19.3.1. (Paley–Wiener) A function F : R→ C is the Fourier transform of
a function f ∈ L2(R) that vanishes for |x|> A> 0, i.e.

F(ξ ) =
1√
2π

∫ A

−A
f (x)e−ixξdx, (19.3.6)

if and only if F belongs to L2(R) and extends to an entire function that belongs to
EA.

Proof: We have shown that if F has the form (19.3.6) with f ∈ L2(R), then F extends
and belongs to EA. By (19.3.5), the restriction to R belongs to L2(R).

Conversely, suppose that a function F belongs to EA, and its restriction to R

belongs to L2. Then the inverse transform

f (x) = lim
R→∞

{

1√
2π

∫ R

−R
F(ξ )eixξ dξ

}

(19.3.7)
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belongs to L2(R); see Exercise 14 of Chapter 18. Our goal is to show that f (x) = 0
for |x|> A.

Let

g(z) =
∫ 1

2

− 1
2

F(u− z)du. (19.3.8)

Then g(z) is an entire function of z. Since F ∈ EA, for ε > 0 we have

|g(z)| ≤
∫ 1

2

− 1
2

|F(u− z)|du= O

(

∫ 1
2

− 1
2

e(A+ε)(|z|+|u|)du

)

= O

(

e(A+ε)|z|
∫ 1

2

− 1
2

e(A+ε)|u|du

)

= O
(

e(A+ε)|z|
)

. (19.3.9)

Furthermore, for real x

|g(x)|2 ≤
∫ 1

2

− 1
2

|F(u− x)|2du ≤ ‖F‖2
2 < ∞ (19.3.10)

and

∫ ∞

−∞
|g(x)|2dx ≤

∫ ∞

−∞

{
∫ 1

2

− 1
2

|F(u− x)|2du
}

dx

=
∫ 1

2

− 1
2

∫ ∞

−∞
|F(u− x)|2dxdu

≤
∫ 1

2

− 1
2

‖F‖2
2 du= ‖F‖2

2 < ∞, (19.3.11)

so that g(x) is bounded and g(x) belongs to L2(R).
Choose B> A and define

G(z) = eiBzg(z). (19.3.12)

Since g(z) belongs to EA, it follows that G is of exponential type. For z = x real,
(19.3.10) implies that

|G(x)| = |g(x)| = O(1). (19.3.13)

If z= ib and b> 0, then by (19.3.9),

|G(ib)| = |e−Bbg(ib)| = O(e−Bb+(A+ε)b).

Since B>A, for small ε > 0 the quantity on the right side approaches zero as b→∞.
In particular we obtain

|G(ib)| = O(1), as b→ ∞. (19.3.14)
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It follows from (19.3.13), (19.3.14), and the Phragmén–Lindelöf principle, that
|eiBzg(z)| is O(1) for z= Reiθ ,0 ≤ θ ≤ π/2. Thus

|g(Reiθ )| ≤ c1e
BRsinθ for 0 ≤ θ ≤ π/2.

Similarly,
|g(Reiθ )| ≤ c2e

BRsinθ for π/2 < θ ≤ π.

Therefore

|g(Reiθ )| = O(eBRsinθ ), R> 0, 0 ≤ θ ≤ π. (19.3.15)

Take L> 0 and x<−B and consider the integral

∫ R

−R

e−ixu

1− iLu
g(u)du, (19.3.16)

where R is large enough that LR> 1. By Cauchy’s theorem, we may change the path
of integration in (19.3.16) to a semicircle. In fact the integral of

e−ixug(u)
1− iLu

over the contour Γ in Figure 19.1 vanishes, so

∫ R

−R

e−ixu

1− iLu
g(u)du = −

∫

|u|=R,Imu>0

e−ixu

1− iLu
g(u)du

= −i
∫ π

0

e−ixReiθ

1− iLReiθ
g(Reiθ )Reiθ dθ .

A simple estimation gives
∣

∣

∣

∣

∫ R

−R

e−ixu

1− iLu
g(u)du

∣

∣

∣

∣

≤ CR
LR−1

∫ π

0
exRsinθ+BRsinθ dθ . (19.3.17)

Since we have chosen LR> 1 and x<−B, while sinθ ≥ 0 for 0 ≤ θ ≤ π , the right
side of (19.3.17) approaches zero as R→ ∞, and

−R R

ib

Γ

Fig. 19.1 Change of contour
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∫ π

0
e−aRsinθ dθ = O

(

1
R

)

for every a> 0; (19.3.18)

see Exercise 8.
Let

g−L(u) =
g(u)

1− iLu
, L> 0, −∞ < u< ∞. (19.3.19)

Since this is the product of two L2 functions, the Cauchy–Schwarz inequality
implies that it belongs to L1. It follows from (19.3.17) and (19.3.18) that the Fourier
transform of g−L vanishes for L> 0 and x<−B:

ĝ−L(x) = 0, L> 0, x<−B. (19.3.20)

However (19.3.10) implies that

lim
L→0+

∫ ∞

−∞

∣

∣

∣

∣

g(u)
1− iLu

−g(u)
∣

∣

∣

∣

2

du = 0. (19.3.21)

Hence, by (19.3.5),

lim
L→0+

∫ ∞

−∞
|ĝ−L(u)− ĝ(u)|2 du = 0. (19.3.22)

From (19.3.20), it follows that

ĝ(x) = 0, for x<−B. (19.3.23)

For real v

g(v) =
∫ 1/2

−1/2
F(u− v)du

=
1√
2π

lim
R→∞

∫ 1/2

−1/2

∫ R

−R
f (x)e−ix(u−v) dxdu

=
1√
2π

lim
R→∞

∫ R

−R

{
∫ 1/2

−1/2
e−ixu du

}

f (x)eixv dx

=
1√
2π

lim
R→∞

∫ R

−R
f (x)

sin(x/2)
x/2

eixv dx.

It follows that

ĝ(x) =
√

2π f (x)
sin(x/2)
x/2

.

Since (19.3.23) holds for every B> A, we conclude that f (x) = 0 for x<−A.
Similarly, we can show that f (x) = 0 for x > A. Consider G(−ib),b> 0 instead

of G(ib), and note that by (19.3.9),

|G(−ib)| = |eBbg(−ib)|= O(eb(A+ε+B)), b> 0, (19.3.24)
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for every ε > 0. If B<−A< 0, then for sufficiently small ε , we have

|G(−ib)| = O(1) as b→+∞, B<−A< 0, (19.3.25)

corresponding to (19.3.14). By the Phragmén–Lindelöf principle applied to a semi-
circular domain in the lower half plane, we obtain

|g(Reiθ )| = O(eBRsinθ ), −π ≤ θ ≤ 0, R> 0, (19.3.26)

corresponding to (19.3.15). Furthermore, for some constant C

∣

∣

∣

∣

∫ R

−R

e−ixu

1+ iLu
g(u)du

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ 0

−π

e−ixReiθ g(Reiθ )Reiθ

1+ iLReiθ
dθ

∣

∣

∣

∣

≤ CR
LR−1

∫ 0

−π
e(x+B)Rsinθ dθ

=
CR

LR−1

∫ π

0
e−(x+B)Rsinθ dθ ,

which tends to zero as R → ∞ if x > −B. This corresponds to (19.3.17). As in
(19.3.20), we deduce that

ĝL(x) = 0, L> 0, x>−B> A, (19.3.27)

where gL(x) = g(x)/(1+ iLx) belongs to L1(R). It follows as before that f (x) = 0
for x> A. �

Corollary 19.3.2. If F is an entire function of exponential type, and the restriction
f of F to R belongs to L2(R), then f (x)→ 0 as |x| → ∞.

Proof: By Theorem 19.3.1, the inverse Fourier transform of f vanishes outside a
bounded interval. Therefore it belongs not only to L2(R), but to L1(R). Since f is
the Fourier transform of an L1 function, it has limit 0 at ∞. �

19.4 An application

As a simple application of the Paley–Wiener theorem, together with the basics of
Fourier series, we can find formulas that express certain entire functions in terms of
their values at the integers. Looked at another way, these are formulas that interpo-
late from functions on the integers to entire functions.

If f (z) is an entire function of z belonging to the class Eσ ,σ > 0, as defined in
Section 19.3 then f

(πz
σ

)

belongs to Eπ . Thus the study of functions of exponential
type may be reduced to that of functions in Eπ .

The basic idea is that if the restriction to R of such a function f belongs to L2(R),
then the inverse Fourier transform g belongs to L2 and vanishes outside the interval
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[−π,π]. The set of such functions is the Hilbert space H with inner product

(g,h) =
1

2π

∫ π

−π
g(x)h(x)dx;

see Section 1.9. A calculation shows that the functions einx, n= 0,±1,±2, . . . are an
orthonormal set in H. In fact they are a basis; see Section 4.4. Therefore the inverse
Fourier transform g of f can be written as a Fourier series:

g(x) =
∞

∑
n=−∞

ane
inx, |x| ≤ π. (19.4.1)

where

an =
1

2π

∫ π

−π
g(x)e−inx dx =

1√
2π

f (n); (19.4.2)

see Theorem 4.4.3.
Since g vanishes outside the interval [−π,π], we may extend (19.4.1) to all values

of x as

g(x) =
∞

∑
n=−∞

an ϕn(x) (19.4.3)

with

ϕn(x) =

{

einx, |x| ≤ π;

0, |x|> π.

The Fourier transform of ϕn is

ϕ̂n(ξ ) =
1√
2π

∫ π

−π
eix(n−ξ ) dx

=
1√
2π

2sinπ(ξ −n)
(ξ −n)

= (−1)n
√

2
π

sinπξ
ξ −n

. (19.4.4)

Combining (19.4.2), (19.4.3), and (19.4.4), we get the following result of Hardy
[58].

Theorem 19.4.1. (Hardy) Suppose that f (z) belongs to Eπ and its restriction to R

belongs to L2(R). Then

f (z) =
sinπz

π

∞

∑
n=−∞

(−1)n
f (n)
z−n

. (19.4.5)

This result can easily be adapted to the case when f restricted to R is only
assumed to be bounded.

Theorem 19.4.2. Suppose that f (z) belongs to Eπ and its restriction toR is bounded.
Then
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f (z) =
sinπz

π

{

f ′(0)+
f (0)
z

+ ∑
n 
=0

(−1)n f (n)
[

1
z−n

+
1
n

]}

. (19.4.6)

Proof: Put g(z) = [ f (z)− f (0)]/z. Then g(z) belongs to Eπ , and g(x) is in L2(R).
By Theorem 19.4.1,

g(z) =
sinπz

π

∞

∑
n=−∞

(−1)n
g(n)
z−n

.

Since g(0) = f ′(0), it follows that

f (z)− f (0) =
zsinπz

π ∑
n 
=0

(−1)n
f (n)− f (0)
n(z−n)

+ f ′(0)
sinπz

π
. (19.4.7)

The expansion

π
sinπz

=
1
z
+ ∑

n 
=0

(−1)n
(

1
z−n

+
1
n

)

=
1
z
+ z ∑

n 
=0

(−1)n

n(z−n)
(19.4.8)

(see Exercise 10) gives

f (0) = f (0)
sinπz

π
· π

sinπz
= f (0)

sinπz
π

(

1
z
+ z ∑

n 
=0

(−1)n

n(z−n)

)

.

Combining this with (19.4.7) yields (19.4.6). �

Exercises

1. Suppose that f is holomorphic in {z : Rez> 0}, continuous up to the imaginary
axis, and has limit 0 as |z| → ∞, Rez≥ 0. Use the maximum modulus principle
to show (without using Theorem 19.1.1) that

| f (z)| ≤ sup
t∈R

| f (it)|.

Show that the inequality is strict unless f (z)≡ 0.
2. Prove Theorem 19.1.2.
3. Show that the restriction on the exponent β in Theorems 19.1.1 and Theorem

19.1.2 cannot be relaxed.
4. Suppose that f is entire and | f (z)| ≤Cexp(|z|ρ), where ρ < 1/2. Show that if

f is bounded on a ray, then it is constant.
5. Suppose that α > 1/2 and f is holomorphic in the domain Ω = {z : |Rez| <

π/2α, Imz≥ 0} and continuous on the closure. Suppose also that f is bounded
on the vertical sides of the closure, and that log | f (s+ it)| = O(eβ t) as t → ∞,
|s|< π/2α , where β < α . Prove that f is bounded in Ω .
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6. Adapt Theorem 19.1.2 to show that the inequalities (19.2.7) and (19.2.8) imply
(19.2.9).

7. (a) Prove Corollary 19.2.2. (Hint: use part (c) of Exercise 8 of Chapter 18.)

(b) What can be said if ab= 1?
8. Prove (19.3.18).
9. Verify directly that the functions ϕ̂n in (19.4.4) belong to Eπ .

10. Verify the expansion (19.4.8).

Remarks and further reading

For some history of the Phragmén–Lindelöf principle, see Gårding [47]. The Phrag-
mén–Lindelöf principle occurs again in complex interpolation theory and the proof
of the Riesz–Thorin theorem; see Chapter 23.

The Paley–Wiener theorem has applications to the theory of entire functions of
exponential type; see Chapter 8 and the references there.



Chapter 20
Theorems of Wiener and Lévy; the
Wiener–Hopf method

This chapter follows on Sections 18.3 and 18.4. We want to apply the results on the
Fourier transform to deal with convolution equations —equations of the form

u(x) =
∫ ∞

−∞
k(x− y)u(y)dy+ f (x), x ∈ R, (20.0.1)

or the form
u(x) =

∫ ∞

0
k(x− y)u(y)dy+ f (x), x> 0. (20.0.2)

We assume that k and f belong to L1 = L1(R), and look for solutions u∈ L1. Wiener
proved that if a function 1− k̂(ξ ) does not vanish for any ξ ∈ R, then its reciprocal
has the same form. In view of results from Chapter 18, this result is key to under-
standing the equation (20.0.1). Wiener’s result was generalized by Lévy to general
holomorphic functions of k̂. An important application is to the subtler case of con-
volution equations of the form (20.0.2).

The theorems of Wiener and of Lévy are proved in Section 20.1. In Section 20.2
we study equations (20.0.2) by a modified version of the Wiener–Hopf technique,
due to Gohberg and Krein.

20.1 The ringR

As constructed in Section 18.4, the space L1 = L1(R) can be taken to be the com-
pletion of the space of continuous or piecewise constant functions f : R → C that
vanish for large |x|, with respect to the metric induced by the norm

|| f ||1 =
∫ ∞

−∞
| f (x)|dx.

L1 can also be taken to be the completion of the space S of Schwartz functions:
functions each of whose derivatives is O(|x|−n) as |x| → ∞, all n. We have shown
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that the Fourier transform of a Schwartz function is a Schwartz function (Proposition
18.3.1.)

It was also shown that L1(R) is a commutative ring, with convolution as multi-
plication:

[ f ∗g](x) =
∫ ∞

−∞
f (x− y)g(y)dy.

It is convenient to add an identity element 1 to L1. Thus we consider formal expres-
sions a1+ f , a ∈ C, f ∈ L1, with the multiplication

(a1+ f )∗ (b1+g) = ab1+ag+b f + f ∗g.
The enlarged ring is denoted C1⊕L1.

The Fourier transform 1̂ is defined to be identically 1. Thus the image of C1⊕L1

under the Fourier transform is a subspace R of the space of continuous functions
F : R→ C that have a limit at ∞:

lim
|x|→∞

F(x) exists and is finite.

Let R0 = { f̂ : f ∈ L1}, so R = C⊕R0. We define a norm in R by

||a+ f̂ || = |a|+ || f ||1, a ∈ C, f ∈ L1.

Since L1 is complete with respect to the metric induced by its norm, so is R.
The Fourier transform takes convolution to multiplication:

f̂ ∗g(ξ ) = f̂ (ξ ) ĝ(ξ );

Theorem 18.4.4. Therefore R is a ring, and the Fourier transform is a ring isomor-
phism from L1(R)⊕C to R. This is the key fact in the study of certain types of
integral equations.

Not every continuous function from R to C with limit zero at ∞ belongs to R0,
so not every continuous function from R to C with limit at ∞ belongs to R; see
Exercise 7 of Chapter 18. Therefore the next proposition and the following two
theorems are significant.

Proposition 20.1.1. R contains every rational function that has no poles on the real
axis and is regular at ∞.

Proof: The identities (18.3.1) and (18.3.2) show that each such function with a sin-
gle pole belongs to R. These functions generate the subring of rational functions
described in the statement. �

Theorem 20.1.2. (Wiener) Suppose that F belongs to R and lim|x|→∞F(x) �= 0.
Then F has an inverse inR if and only if F(ξ ) �= 0, all ξ ∈ R.
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For the statement and proof of the analogous theorem for Fourier series, see
Exercises 14 and 15 of Chapter 4. For an adaptation that proves Theorem 20.1.2;
see Exercise 5. Theorem 20.1.2 is a special case of the following theorem of Lévy

[90].

Theorem 20.1.3. Suppose that F belongs to R and suppose that φ is holomorphic
on a domain Ω that contains the closure of the image F(R). Then the composition
φ ◦F belongs toR.

Proof: Let A ⊂ C be the closure of F(R). Choose δ > 0 small enough that Ω con-
tains the 2δ neighborhood of A:

{z : |z−a|< 2δ , some a ∈ A}.

Suppose that F = c+ f̂ . Choose a Schwartz function g ∈ L1 such that

|| f −g||< δ/2. (20.1.1)

Let G = c+ ĝ, so that ||F−G||< δ/2. For each ξ ∈R, the Cauchy integral formula
gives

φ(F(ξ )) =
1

2πi

∫
|ζ |=δ

φ(G(ξ )+ζ )
G(ξ )+ζ −F(ξ )

dζ . (20.1.2)

For each fixed ζ here, the integrand is a function Hζ of ξ . We want to show that this
function belongs to R, uniformly with respect to ζ . First,

1
G(ξ )+ζ −F(ξ )

=
1

ζ − [F(ξ )−G(ξ )]
=

1
ζ

∞

∑
n=0

(
F(ξ )−G(ξ )

ζ

)n

.

The summands have norm ||F−G||/δ < 1/2 so the series converges in R:

1
G+ζ −F

∈R,

∣∣∣∣∣
∣∣∣∣∣

1
G+ζ −F

∣∣∣∣∣
∣∣∣∣∣ <

1
δ

∞

∑
n=0

1
2n

=
2
δ
. (20.1.3)

As elements of R, the summands depend continuously on ζ . Convergence of the
sum is uniform with respect to ζ in the circle {ζ : |ζ | = δ}. Therefore the map
ζ → (ζ +G−F)−1 is continuous from the circle to R.

To complete the proof, it is enough to obtain the analogous result for the numer-
ator of the integrand in (20.1.2). This will show that the integrand Hζ itself is such a
function with bound O(δ−1), so the result of the integration in (20.1.2) will belong
to R. Now for each ζ ,

φ(G(ξ )+ζ )−φ(c+ζ ) = φ(c+ζ + ĝ(ξ ))−φ(c+ζ ) = O(ĝ(ξ )) (20.1.4)

as |ξ | → ∞. Since ĝ is a Schwartz function, this difference is O(|ξ |−m) as |ξ | → ∞,
for every m> 0. Similar estimates hold for the derivatives of φ(G(ξ )+ζ )−φ(c+
ζ ), so this difference is itself a Schwartz function as a function of ξ . By Proposition
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18.3.1 the difference (20.1.4) is the Fourier transform of a Schwartz function gζ .
The dependence on ζ is continuous, so the proof is complete. �

20.2 Convolution equations

One type of integral equation that arises in applications has the form

u(x) =
∫ ∞

−∞
k(x− y)u(y)dy+ f (x). (20.2.1)

Here k and f are given functions that belong to L1, and a solution u is sought in L1.
In view of our prior discussion, it is natural to take the Fourier transform:

û(ξ ) = k̂(ξ ) û(ξ )+ f̂ (ξ ).

If k̂(ξ )= 1 for some ξ0, but f̂ (ξ0) �= 0, there is clearly a problem. Otherwise, by The-
orem 20.1.2, 1− k̂ has an inverse 1− k̂1 ∈R, and the (unique) solution to (20.2.1)
that belongs to L1 is

u(x) = f (x)− [k1 ∗ f ](x). (20.2.2)

Remark. Given k ∈ L1, the map u→ k∗u is a bounded map in each Lp space on the
line, 1 ≤ p< ∞, and also in the space of bounded continuous functions on the line.
Therefore the solution (20.2.2) works for f , u in each such space.

A subtler type of integral equation arises in certain physical problems, for exam-
ple, radiative transport theory:

u(x) =
∫ ∞

0
k(x− y)u(y)dy+ f (x), x> 0. (20.2.3)

Here k is assumed to be given, and integrable, on the whole line, but f is given, and
u is sought, only on the half-line. Equation (20.2.3) can be converted to something
closer to (20.2.1) by extending the (unknown) function u to the whole line, and
setting

u+(x) =

{
u(x), x≥ 0;

0, x< 0.
u−(x) =

{
0, x≥ 0;

u(x), x< 0.
(20.2.4)

Let f (x) = 0, x< 0, i.e. f = f+. Then (20.2.3) takes the form

u(x) = [k ∗u+](x)+ f+(x). (20.2.5)

This implicitly defines u− in terms of u+:

u− = [k ∗u+]−. (20.2.6)

Note that u+ ∈ L1 implies also that u− ∈ L1.
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For notational reasons, which will become clear in a moment, we choose a dif-
ferent normalization of the Fourier transform. This change will have no effect on
any of the previous results; it merely amounts to replacing the previous f̂ (ξ ) with
f̂ (−ξ ). Thus we set

û(ξ ) =
∫ ∞

−∞
u(x)eixξ dx. (20.2.7)

The renormalized inverse transform is

u(x) =
1

2π

∫ ∞

−∞
e−ixξ û(ξ )dξ . (20.2.8)

The transformed version of (20.2.5) is

(1− k̂) û+ = f̂ − û−. (20.2.9)

The next step is to distinguish between terms like û+ and û− as elements of R.

Proposition 20.2.1. Suppose that u belongs to L1 and u± are defined by (20.2.4).
Then û+ extends to a function U+ that is holomorphic in the upper half plane C+
and continuous on the closure C+ ∪R. Similarly û− extends to a function U− that
is holomorphic in C− and continuous on the closure C−∪R. Moreover, U± → 0 as
|z| → ∞ in the respective half-planes.

Proof: In fact |eixξ | = exp(−x Imξ ) so Imξ ≥ 0 implies that the function

U+(ξ ) ≡ û+(ξ ) =
∫ ∞

0
u(x)eixξ dx

is well-defined and bounded by ||u+||, and similarly for U− = û− in C−. It is easily
checked that the extensions are holomorphic. To prove the statements about continu-
ity on the closure and vanishing at ∞ it is enough to consider the case of the indicator
function of an interval; see Exercise 2. Then the result carries over to piecewise con-
stant functions and, by approximation, to general functions in L1. �

Let us note that there is an equivalent, but more direct, formulation of the splitting
of U ; see Exercise 1.

Proposition 20.2.1 leads to an equivalent version of (20.2.9):

(1− k̂)U+ = f̂ −U−. (20.2.10)

The basic idea of Wiener and Hopf was to eliminate U− from (20.2.10) by factor-
ing A = 1− k̂. We illustrate with a simple example. Consider a restricted case of
Lalesco’s equation

u(x) = λ
∫ ∞

0
e−|x−y| u(y)dy+ f (x), x> 0, λ <

1
2
. (20.2.11)

Thus k(x) = λe−|x| and
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k̂ = λ
∫ 0

−∞
ex+ixξ dx+λ

∫ ∞

0
e−x+ixξ dx

= λ
{

1
1+ iξ

+
1

1− iξ

}
=

2λ
1+ξ 2 . (20.2.12)

Set μ =
√

1−2λ > 0, so

1− k̂(ξ ) =
ξ 2 +μ2

ξ 2 +1
=

(ξ + iμ)(ξ − iμ)
(ξ + i)(ξ − i)

and we have a factorization

A ≡ 1− k̂ =
A+

A− , A+ =
ξ + iμ
ξ + i

, A− =
ξ − i

ξ − iμ
.

Note that A± is holomorphic in C±. When f ≡ 0 in (20.2.11), equation (20.2.10) is
equivalent to

A+U+ = −A−U−.

The left side of this equation extends holomorphically to C+, while the right side
extends holomorphically to C− and each side is continuous up to R. Thus, taken
together, they define an entire function G. (See the argument used in the proof of
Theorem 1.6.1.) Each side has limit zero as |ξ | → ∞. By Liouville’s theorem G= 0.
Thus A+U+ = 0; we have eliminated U− from the problem. Since A+ has no real
zeros, it follows that (20.2.11) has only the trivial solution u = 0. As we shall see,
the argument can be extended to the inhomogeneous equation ( f �= 0), to show that
(20.2.11) has a unique solution.

Wiener and Hopf generalized the procedure used in this example. Starting with
(20.2.10), set A = 1− k̂. Suppose, as in the example, that A has no zeros on R.
Then a continuous determination of the logarithm logA(ξ ) can be made along R,
normalized with

lim
ξ→−∞

logA(ξ ) = 0.

The limit as ξ → +∞ is 2mπi for some index m ∈ Z. By definition, the integer m
is the index of A. Geometrically the index is i times the change in the argument of
A(ξ ) as ξ goes from −∞ to +∞.

Theorem 20.2.2. Suppose that k and f belong to L1. Suppose that A= 1− k̂ has no
zeros on R and has index zero. Then (20.2.9) has a unique solution u+ ∈ L1.

Proof: Since A has no zeros on R, and has index zero, the image A(R) is a closed
curve that passes through z= 1 and avoids the origin. Therefore the principal branch
of the logarithm is holomorphic in a neighborhood of A(R). By Theorem 20.1.3,
logA belongs to R0. Let L = L+ +L− be the corresponding splitting of L = logA.
Then the functions

A+ = expL+, A− = exp(−L−) (20.2.13)
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belong to R. Note that A = A+/A−. Moreover A± has a holomorphic extension to
C± and these extensions have no zeros on the closure of C±, respectively. Arguing
exactly as in the example above, we see that (20.2.9) is equivalent to

A+U+−H+ = H−−A−U−, (20.2.14)

where H = H+ +H− is the splitting of H = A− f̂ . As in the example, (20.2.14)
determines an entire function that is identically zero. Thus A+U+ = H+ and the
solution u+ of (20.2.9) is the inverse transform of

U+ =
H+

A+ ∈ R0. �

When the index of A is not zero, it is necessary to compensate. Let

Πm = Πm(ξ ) =
(ξ + i)m

(ξ − i)m
, m=±1,±2,±3, . . . .

As ξ goes from −∞ to +∞, the argument of ξ − i decreases by π , and the argument
of ξ + i increases by π . Thus Πm has index m. Note that |Πm(ξ )|= 1, ξ ∈ R. Note
also that Πm belongs to R; see Proposition 20.1.1.

Theorem 20.2.3. Suppose that k and f belong to L1. Suppose also that A = 1− k̂
has no zeros on R and has index m> 0. Then (20.2.9) has an m-dimensional space
of solutions u ∈ L1.

Proof: The index

ind

(
A

Πm

)
= indA− indΠm = 0,

so the argument in Theorem 20.2.2 applies: A/Πm has a factorization A+/A−, where
A± has the same properties as in the proof of Theorem 20.2.2. Then

A =
A+

A−
(ξ + i)m

(ξ − i)m
=

B+

B− ,

where

B+ = A+(ξ + i)m = ξm+O(|ξ |m−1),
B− = A−(ξ − i)m = ξm+O(|ξ |m−1) (20.2.15)

as ξ → ∞. Note that B+ has no zeros on R. Let H± be defined as before: A− f̂ =
H++H−. Then our equation takes the form

B+U+− (ξ − i)mH+ = (ξ − i)mH−−B−U−.

Again the left side extends to the upper half plane and the right side extends to the
lower half plane. It follows from (20.2.15) that the entire function thus defined is a
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polynomial of degree less than m. Conversely, if P is such a polynomial, the rational
function (ξ − i)−mP/A+Πm belongs to R0. Therefore the inverse transform u+ of

U+ =
(ξ − i)mH++P

B+ =
H++(ξ − i)−mP

A+Πm
∈ R0

is a solution of (20.2.9). �

Theorem 20.2.4. Suppose that k and f belong to L1. Suppose also that A = 1− k̂
has no zeros on R and has index −m < 0. Then (20.2.9) has a solution u in L1 if
and only if f satisfies a certain system of m linearly independent constraints. If the
solution exists, it is unique.

Proof: In this case it is convenient to replace ∏(ξ + i)m(ξ − i)−m by another product
with index m, say

Pm(ξ ) =
m

∏
ν=1

ξ + iν
ξ − iν

.

Then APm has index zero, so it has a factorization A+/A−. As in the previous proof,
(20.2.9) becomes

A+

Pm
U+−H+ = H−−A−U−.

Both sides vanish at ∞, so the implicitly defined entire function is zero. The first
term on the left has simple zeros at ξ = iν , 1 ≤ ν ≤m, so there is a solutionU ∈R0

if and only if H+(iν) = 0, 1 ≤ ν ≤ m. Since H+ depends linearly on f , these can
be taken to be the linear constraints referred to above. �

Remark. The linear constraints on f in Theorem 20.2.4 can be made more explicit,
in the form ∫ ∞

0
f (x)wν(x)dx = 0, 1 ≤ ν ≤ m, (20.2.16)

where the wν are certain linearly independent bounded functions; see Exercises 4
and 7.

20.3 The case of real zeros of 1− k̂

In many physical problems the function k is not only real but even. This implies that
k̂ is also real and even; Exercise 8. In particular A= 1− k̂ is real. If A has no zeros,
then the index is zero and Theorem 20.2.2 applies. Otherwise A has an even number
2m of real zeros, counting multiplicity.

Suppose, somewhat more generally, that k and f belong to L1, that k̂ is real-
valued, and that A= 1− k̂ has zeros a1,a2, . . .a2m, counting multiplicity, in the sense
that A/Q is bounded and nowhere zero on R, where
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Q(ξ ) =
2m

∏
j=1

(ξ −a j).

Let

B =
A
Q
(1+ξ 2)m = A

(ξ + i)m(ξ − i)m

Q
.

Then B is real on R, with no zeros.
Under a mild smoothness assumption, the Hölder condition

|B(ξ )−B(η)| ≤C|ξ −η |α , some 0 < α < 1,

there is a factorization

B =
B+

B− , B± holomorphic in C±,continuous on the closure,

where B± has no zeros and has limit 1 as ξ → ∞; see Exercise 5 of Chapter 18 and
Exercise 1. Then

A =
BQ

(ξ + i)m(ξ − i)m
=

B+(ξ + i)−m

B−(ξ − i)m
Q =

A+

A− Q,

where A± has no zeros in the closure of C±, and A±(z) = z∓m[1+O(|z|−1] as z→ ∞
in C±.

The equation
AU+ = f̂ , f ∈ L1, (20.3.1)

is the same as

A+QU+ = A− f̂ = H++H−, H± = (A− f̂ )±.

Then
A+QU+−H+ = H−

on R. It follows that A+QU+−H+ extends as an entire function. This function is
o(zm) at ∞, and thus is a polynomial P of degree < m. Therefore our solution is,
formally,

U+ =
H++P
A+Q

=
K
Q
, K =

H++P
A+ . (20.3.2)

Taking the inverse transform, we have, formally,

u(x) =
1

2π

∫ ∞

−∞
e−ixξ K(ξ )

Q(ξ )
dξ , x> 0. (20.3.3)

The integrand in (20.3.3) has singularities at ξ = a j, so the integral needs some
clarification. For simplicity, let us suppose that the a j are distinct. As a first step, we
use the fact that the integrand is holomorphic in C+ to modify the path of integration
to avoid the singularities. Let Γ be the union of
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R\Sδ , Sδ =
2m⋃
j=1

{ξ : |ξ −a j| ≤ δ}

and the semicircles Γj = {z : |z− a j| = δ , Imz > 0}, where δ > 0 is chosen small
enough so that the Γj are disjoint. The resulting integral is independent of δ .

Near a j, the integrand in (20.3.3) is approximately

K(a j)
Q(ξ )

= K(a j)
b j

ξ −a j
, b j = ∏

k �= j

(a j−ak)−1.

Let us write
K(z)
Q(z)

=
2m

∑
j=1

b j K(a j)
z−a j

+L(z).

If K satisfies the Hölder condition at the a j, i.e. if for some β > 0, and for j =
1,2, . . . ,2m,

|K(ξ )−K(a j)| ≤ C|ξ −a j|β , if |ξ −a j|< δ ,

then the inverse transform l of L is well-defined.
It remains to determine the integral

1
2π

∫
Γ
e−ixz

2m

∑
j=1

b j K(a j)
z−a j

dz. (20.3.4)

The integrand is holomorphic and decreasing at ∞ in the region below Γ , in such a
way that the residue theorem applies. Because of the orientation of Γ , the integral
(20.3.4) picks up −i times the sum of the residues. Thus (20.3.2) is

u(x) = l(x)− i
2m

∑
j=1

b j K(a j)e−ia jx. (20.3.5)

Exercises

1. Suppose that U : R→ C is continuously differentiable and

∫ ∞

−∞

|U(ξ )|
1+ |ξ | dξ < ∞.

Show that the splitting U =U+ +U− as in Proposition 20.2.1 can be accom-
plished via the Cauchy transform:

U±(ξ ) = ± lim
ε→0+

Cu(ξ ± iε) = ± lim
ε→0+

{
1

2πi

∫ ∞

0

U(t)dt
t− (ξ ± iε)

}
.
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2. Compute the Fourier transform of the indicator function of an interval:

f (x) = 1 if a< x< b, f (x) = 0 otherwise.

Note that f̂ (z) vanishes at ∞ in the half plane C± if the interval [a,b] is in the
appropriate half-line R±.

3. (a) Let f (x) = e−μ |x|, μ > 0.

(a) Show that f̂+ = i/(ξ + iμ).
(b) Show that f̂− = −i/(ξ − iμ).
(c) Suppose Imα > 0. Find the inverse transform of 1/(ξ +α).
(d) Suppose Imα < 0. Find the inverse transform of 1/(ξ −α).
(e) Show that the inverse transform of 1/(1+ξ 2) is πe−|x|.

4. (a) Suppose that f and g belong to L1. Suppose that f is bounded. Show that
the convolution f ∗g (which belongs to L1) is also bounded.

(b) Deduce from Exercise 3 that if α is not real, then the inverse transform of
1/(ξ −α) is a bounded L1 function.

(c) Suppose that V belongs to R0, while R is a rational function that vanishes at
∞ and has no poles on R. Prove that the inverse transform of the product VR is
a bounded L1 function.

5. Suppose that g is a Schwartz function and that G= ĝ. Prove that

sup |G(ξ )| ≤ ||g||1 ≤ sup |G(ξ )|+ sup |G′(ξ )|.

Use this to give a direct proof of Theorem 20.1.2. Suppose that F = f̂ belongs
to R. Choose a Schwartz function G such that ||G−F || ≤ 1

2 . Prove that the
series

∞

∑
n=0

(G−F)n

Gn+1

converges in norm in R, with limit 1/ f . (This is an adaptation to the Fourier
integral case of a proof by Newman [106] of Wiener’s theorem in the case of
Fourier series; see Exercises 14 and 15 of Chapter 4.)

6. Under the assumptions of Theorem 20.2.3, show that each solution w in L1 of
the homogeneous equation

w(x) =
∫ ∞

0
k(x− y)w(y)dy, x> 0,

is a bounded function.
7. Under the assumptions, and notation, of Theorem 20.2.4, let k̃(x) = k(−x).

(a) Show that the transform of k̃ is 1− Ã, where Ã(ξ ) = A(−ξ ).
(b) Show that Ã has index m.

(c) Let w be a solution of the homogeneous equation
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w(x) =
∫ ∞

0
k̃(x− y)w(y)dy =

∫ ∞

0
k(y− x)w(y)dy, x> 0.

Show that if (20.2.9) has a solution u ∈ L1, then
∫ ∞

0
f (x)w(x)dx = 0.

(d) Show that there are m linearly dependent solutions of the homogeneous
equation.

8. Suppose that f ∈ L1 is even and real-valued. Show that f̂ is even and real-
valued.

9. (a) For what values of the parameter λ does the Lalesco problem

u(x) = λ
∫ ∞

0
e−|x−y|u(y)dy, x> 0.

have a non-trivial solution?

(b) Find the non-trivial solutions.
10. The Milne equation comes from the theory of radiative equilibrium. (For a

derivation, see Milne [98] or Titchmarsh [136].) The equation is

u(x) =
∫ ∞

0
k(x− y)u(y)dy, k(x) =

1
2

∫ ∞

|x|
e−t

t
dt. (20.3.6)

(a) Show that k̂(ξ ) = tan−1(ξ )/ξ . (It may help to note that

sin(ξ t)
t

=
∫ ξ

0
cos(st)ds.)

(b) Show that A= 1− k̂ has a double zero at ξ = 0 and no other real zeros.

(c) Discuss the solutions of (20.3.6).

Remarks and further reading

Wiener and Hopf [144] assumed for k the decay condition

|k(x)| = O(e−ε |x|) as |x| → ∞

for some ε > 0. This implies that k̂± are both holomorphic in the strip {z : |Imz|<
ε}. This is the route taken in many treatments, such as Paley and Wiener [115],
Chapter IV; Titchmarsh [136], §11.17; and Noble [109]. We have followed instead
the approach of Krein [80] and Gohberg and Krein [49], who only assume that k
belongs to L1. This latter approach is conceptually simpler, at the price of invok-
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ing more powerful (but important) machinery, namely, Theorem 20.1.2 and Theo-
rem 20.1.3.

Widom [141] contains a discussion of the original technique and subsequent
developments involving operator theory. For much more on the subject from the
point of view of applications, see the articles in Lawrie and Abrahams [84].



Chapter 21
Tauberian theorems

This chapter is largely an exercise in real analysis, but there are important connec-
tions to complex topics and methods. Moreover the starting point of the theory is
a theorem of Abel concerning the boundary behavior of a function holomorphic in
the unit disk:

Theorem 21.0.1. If ∑∞
n=0 anz

n is holomorphic in the unit disk, let

f (x) =
∞

∑
n=1

an x
n, −1< x< 1. (21.0.1)

If the series ∑∞
n=0 an converges, then

lim
x→1−

f (x) =
∞

∑
n=1

an. (21.0.2)

The converse is false, in general. If an = (−1)n then f (z) = 1/(1+ z) has limit
1/2 at z= 1, but the series does not converge. A necessary condition for convergence
is that an → 0. In 1897 Tauber showed that a sufficient condition for the existence of
limx→1− f (x) to imply convergence is that an = o(1/n). In 1906 Fatou [46] showed
that the necessary condition an → 0 is also sufficient if f has a holomorphic exten-
sion to a neighborhood of z= 1.

Some years later Hardy and Littlewood began a series of investigations inspired
by Tauber’s theorem. They used the term “Tauberian” to refer to results of this type,
where an additional condition allows one to prove the converse of a relatively easy
“abelian” theorem like that of Abel. In particular, Littlewood sharpened Tauber’s
condition to an = O(1/n).

Generally speaking, an abelian theorem has the following character: One type of
convergence of a sequence or a function implies a weaker type. A tauberian theorem
gives (preferably optimal) conditions under which the weaker convergence implies
the stronger. The simplest example is that of a numerical sequence {sn}∞

n=1. It is
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easy to show that if
lim
n→∞

sn = s (21.0.3)

then the averages {An} of the first n elements also converge to s:

lim
n→∞

An = s, An =
s1+ s2+ · · ·+ sn

n
. (21.0.4)

The example sn = (−1)n shows that (21.0.4) does not imply (21.0.3). One necessary
condition for (21.0.3) is that the successive differences sn− sn−1 converge to zero.
A theorem of Hardy [59] gives a sharp condition: if sn+1−sn =O(n−1) and (21.0.4)
holds, then so does (21.0.3). (This can fail if sn+1− sn decays more slowly, e.g. if
sn+1− sn = O(n−1+ε).) Hardy’s condition can be thought of as a limitation on the
oscillation of the sequence. A second type of tauberian condition rules out oscil-
lation entirely. For example, if the sequence {sn} is non-decreasing, then (21.0.4)
implies (21.0.3); see Exercise 2.

In this chapter we prove Hardy’s result in a continuous version, and then turn to
theorems of Abel, Littlewood, and Hardy–Littlewood, and to Karamata’s proof of
the Hardy–Littlewood result.

Section 21.4 on the Wiener tauberian theorem depends on Sections 18.3, 18.4.
The present chapter concludes with a tauberian theorem of Malliavin which takes
advantage of complex information to obtain an error estimate.

21.1 Hardy’s theorem

The proof of the theorem of Hardy, mentioned in the introduction above, may be
clearer in a continuous version. Suppose that f : [0,∞)→C is continuous and piece-
wise differentiable. Let

g(x) =
∫ x

0
f (t)dt.

The analogue of (21.0.4) is

lim
x→∞

g(x)
x

= A, (21.1.1)

and the analogue of the condition sn+1− sn = O(n−1) is

| f (x+h)− f (x)| ≤ Kh
x
, if h≥ x≥ x0. (21.1.2)

We show here that, under these conditions,

lim
x→∞

f (x) = A. (21.1.3)
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Hardy’s theorem, as stated in the introduction, can be derived from this by taking
f (x)= sn for n−1< x≤ n, or by carrying out the discrete analogues of the following
calculations, i.e. with summations in place of integrations.

Given δ > 0, for sufficiently large x we have |g(x)−Ax| ≤ δx. Therefore for
h> 0,

∣∣∣∣g(x+h)−g(x)
h

−A

∣∣∣∣ =
∣∣∣∣g(x+h)−A(x+h)

h
− g(x)−Ax

h

∣∣∣∣
≤ 2xδ

h
. (21.1.4)

Thus, since δ > 0 can be chosen at our discretion, we see that

x
h

≤ constant ⇒ lim
x→∞

g(x+h)−g(x)
h

= A. (21.1.5)

On the other hand, using (21.1.2) we have
∣∣∣∣g(x+h)−g(x)

h
− f (x)

∣∣∣∣ =
∣∣∣∣1h

∫ h

0
f (x+ t)dt− f (x)

∣∣∣∣
=

∣∣∣∣1h
∫ h

0
[ f (x+ t)− f (x)]dt

∣∣∣∣
≤

∣∣∣∣1h
∫ h

0

Kt
x
dt

∣∣∣∣
=

1
h
Kh2

2x
=

Kh
2x

. (21.1.6)

Given ε > 0, the difference (21.1.6) is ≤ ε if x/h = K/2ε . Together with (21.1.5),
this implies that f (x) has limit A. �

Condition (21.1.2) is implied by the condition f ′(x) = O(x−1). The example

g(x) = sin(xε)x1−ε , ε > 0, (21.1.7)

shows that (21.0.3) can fail if we only require | f ′(x)| = O(x−1+ε) for some ε > 0;
see Exercise 3.

21.2 Abel, Tauber, Littlewood, and Hardy–Littlewood

The proof of Abel’s theorem, that if f (z) = ∑∞
n=0 anz

n, then

∞

∑
n=0

an = A ⇒ lim
z→1

f (z) = A,
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is straightforward. Let {sn} be the sequence of partial sums of the series, and set
s−1 = 0. Then for |x|< 1,

f (x) =
∞

∑
n=0

(sn− sn−1)xn = (1− x)
∞

∑
n=0

sn x
n.

Since also (1− x)∑∞
n=0 x

n = 1 if |x|< 1, we have, for 0< x< 1,

| f (x)−A| =
∣∣∣∣∣(1− x)

∞

∑
n=0

(sn−A)xn
∣∣∣∣∣

≤ (1− x)

∣∣∣∣∣
N

∑
n=0

(sn−A)

∣∣∣∣∣+ sup
n>N

|sn−A|.

For large N the second term on the right is small, and for fixed N the first term
approaches zero as x→ 1. �

As stated in the introduction, the first converse result is due to Tauber [133].

Theorem 21.2.1. (Tauber) If an = o(1/n), then

lim
x→1−

∞

∑
n=0

anx
n = A ⇒

∞

∑
n=0

an = A.

Proof: Again let {sn} be the partial sums and let f be defined by (21.0.1). Then for
|x|< 1,

sn− f (x) =
n

∑
k=1

ak(1− xk)−
∞

∑
k=n+1

akx
k.

Since |x|< 1 implies 1− xk = (1− x)(1+ x+ · · ·+ xk−1)< k(1− x), we have

|sn− f (x)|< (1− x)
n

∑
k=1

k|ak|+
∞

∑
k=n+1

|ak|xk.

By assumption, given ε > 0 there is N such that n > N implies n|an| < ε . For such
n,

∞

∑
k=n+1

|ak|xk < ε
∞

∑
k=n+1

xk

k
<

ε
n

∞

∑
k=0

xk =
ε

n(1− x)
.

Let xn = 1−1/n. The previous estimates show that
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|sn− f (xn)| < 1
n

n

∑
k=1

k|ak|+ ε

≤ 1
n

N

∑
k=1

k|ak|+ 1
n

{
n

∑
k=N+1

}
ε + ε

=
1
n

N

∑
k=1

k|ak|+
(
n−N
n

)
ε + ε.

Taking n→ ∞, we have f (xn)→ A and the right side has limit 2ε , so sn → A. �

The proof of Fatou’s result, mentioned in the introduction, depends on the local-
ization principle for Fourier series; see [149], IX.4.3, IX.5.7.

Hardy conjectured that the sharp condition for the converse of Abel’s theorem is
an = O(1/n). Littlewood [93] proved this in 1911.

Theorem 21.2.2. (Littlewood) If an = O(1/n), then

lim
x→1−

∞

∑
n=0

anx
n = A ⇒

∞

∑
n=0

an = A.

Littlewood’s proof was considerably more difficult than Tauber’s proof of the
weaker result. In 1914 Hardy and Littlewood [60] proved a different type of result,
using positivity (non-oscillation).

Theorem 21.2.3. (Hardy–Littlewood) If each an ≥ 0, then

lim
x→1−

(1− x)
∞

∑
n=1

an x
n = A ⇒ lim

N→∞

1
N

N

∑
n=0

an = A.

Littlewood’s theorem could be deduced from this result, making use of Tauber’s
theorem, Theorem 21.2.1, in the process.

The proof of Theorem 21.2.3 was greatly simplified, and the result itself consid-
erably generalized, by Karamata [75].

21.3 Karamata’s tauberian theorem

Karamata’s transformation of the original problem is instructive: one tauberian the-
orem may be essentially the same as another, in a different guise.

Let us rewrite the series in (21.0.1) by setting

x = e−ε , s(t) = ∑
n≤t

an.
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Then the series takes the form of a Stieltjes integral (Section 1.8):

∞

∑
n=0

an x
n =

∫ ∞

0
e−εt ds(t) =

1
ε

∫ ∞

0
e−εt s(t)dt, (21.3.1)

and Theorem 21.2.3 is the statement that if each an ≥ 0, then

lim
ε→0+

∫ ∞

0
e−εt s(t)dt = A ⇒ lim

N→∞

s(N)
N

= A.

This is a special case of Theorem 21.3.1. We need here a few simple facts about the

gamma function, defined by

Γ (a) =
∫ ∞

0
e−t ta−1 dt, a> 0.

It follows easily from an integration by parts and a change of variables that for a> 0,
m> 0,

aΓ (a) = Γ (a+1),
∫ ∞

0
e−mtta−1 dt =

Γ (a)
ma .

Let us start with an example. If α(t) = ta, a> 0, then

εa
∫ ∞

0
e−εt dα(t) = aεa

∫ ∞

0
e−εt ta−1 dt

= a
∫ ∞

0
e−s sa−1 ds = aΓ (a) = Γ (a+1). (21.3.2)

It is not difficult to extend this:

lim
t→∞

α(t)
ta

= 1 ⇒ lim
ε→0+

εa
∫ ∞

0
e−εt dα(t) = Γ (a+1); (21.3.3)

Exercise 4. Karamata’s theorem is a partial converse that applies if α is non-
decreasing.

Theorem 21.3.1. (Karamata) Suppose that α : [0,∞) → R is non-decreasing, and
for some a> 0,

lim
ε→0+

{
εa

∫ ∞

0
e−εt dα(t)

}
= 1. (21.3.4)

Then

α(t) ∼ ta

Γ (a+1)
as t → ∞. (21.3.5)

Proof: For each positive integer m,

lim
ε→0+

{
εa

∫ ∞

0
(e−εt)m dα(t)

}
= lim

ε→0+

{
(mε)a

ma

∫ ∞

0
e−mεt dα(t)

}

=
1
ma =

1
Γ (a)

∫ ∞

0
e−mt ta−1 dt. (21.3.6)
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Therefore for each polynomial P such that P(0) = 0,

lim
ε→0

{
εa

∫ ∞

0
P(e−εt)dα(t)

}
=

1
Γ (a)

∫ ∞

0
P(e−t) ta−1 dt. (21.3.7)

It follows from Weierstrass’s polynomial approximation theorem, Theorem 4.4.2,
that any continuous function f : [0,1]→ R such that f (0) = 0 can be approximated
uniformly by polynomials P such that P(0) = 0. Therefore the identity (21.3.7)
carries over, with f in place of P. Choose a sequence of such continuous functions
{ fn} with the property that the fn are pointwise non-decreasing, and

lim
n→∞

fn(s) =

{
1 if e−1 ≤ s< 1,

0 if 0< s≤ e−1.
(21.3.8)

It follows from the assumption that α is non-decreasing that the integrals
∫ ∞

0
fn(e−εt)dα(t)

increase to the limit ∫ 1/ε

0
dα(t) = α(1/ε)−α(0).

Therefore, from (21.3.7) and (21.3.8), we have

lim
ε→0+

{
εa

∫ 1/ε

0
dα(t)

}
=

1
Γ (a)

∫ 1

0
ta−1 dt

=
1

aΓ (a)
=

1
Γ (a+1)

,

which is (21.3.5). �

There are tauberian theorems for Dirichlet series

f (s) =
∞

∑
n=1

an
ns

=
∞

∑
n=1

an/n
ns−1 . (21.3.9)

These can be put into the Karamata form (21.3.1) by setting

α(t) = ∑
n≤et

an
n
,

so that
f (s) =

∫ ∞

0
e−(s−1)t dα(t), (21.3.10)

and the limit s→ 1 corresponds to the limit ε → 0+ above.

The most famous result for Dirichlet series is a theorem of Ikehara [69] that was
used to provide a relatively simple proof of the prime number theorem. Note that in
this case one relies heavily on the behavior of f as a complex function.
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Theorem 21.3.2. (Ikehara) Suppose that f has the form (21.3.9) with an ≥ 0. Sup-
pose also that f is holomorphic for Res > 1 and that the function (s− 1) f (s)−A
has a continuous extension to the closed half plane {s : Res≥ 1}. Then

lim
n→∞

{
1
n

n

∑
k=1

ak

}
= A.

This is closely related to the case a = 1 of Karamata’s theorem. The stronger
hypotheses give a stronger result; see Exercise 6.

Let us pass to the next section via one more transformation. Suppose that α has
a bounded derivative H, so that

ε
∫ ∞

0
e−εt dα(t) =

∫ ∞

0
F(εt)H(t)

dt
t
. (21.3.11)

Set

ε = e−x, t = ey, f (x) = F(e−x), h(x) = H(ex). (21.3.12)

Then (21.3.11) becomes ∫ ∞

−∞
f (x− y)h(y)dy. (21.3.13)

Note that asymptotic behavior of (21.3.11) as ε → 0+ corresponds to asymptotic
behavior of (21.3.13) as x→ ∞. Note also that f (x) = e−x exp(−e−x).

21.4 Wiener’s tauberian theorem

This section depends on Sections 18.3 and 18.4. Let us recall some material from
those sections. The Fourier transform

f̂ (ξ ) =
∫ ∞

−∞
f (x)e−ixξ dx.

maps L1(R) intoC0(R), the space of continuous functions with limit zero as |x|→∞.
We denote by R0 ⊂C0(R) the image of L1 under the Fourier transform. Multi-

plication inR0 corresponds to convolution in L1:

h(x) =
∫ ∞

−∞
f (x− y)g(y)dy ⇒ ĥ = f̂ ĝ.

The norm inR0 is taken to be the L1 norm of the inverse transform:

|| f̂ || =
∫ ∞

−∞
| f (x)|dx.
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−2 −1 0 1 2

1

Fig. 21.1 The functionU(ξ )

LetRc denote the subspace ofR0 consisting of functions with compact support, i.e.
functions f̂ such that f̂ (ξ ) = 0 for sufficiently large |ξ |.

The following piecewise linear function will play several roles here:

U(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if ξ ≤−2;

2+ξ if −2< ξ <−1;

1 if −1≤ ξ ≤ 1

2−ξ if 1< ξ < 2;

0 if ξ ≥ 2.

(21.4.1)

See Figure 21.1.

Lemma 21.4.1. The function U belongs toRc.

Proof: The inverse transform

u(x) =
1
2π

∫ ∞

−∞
U(ξ )eixξ dξ =

cosx− cos2x
πx2

(21.4.2)

is integrable on the line, soU belongs to R. By definition, U has compact support.
�

Note that for ε > 0 and any integers M < N, the sum

N

∑
k=M

U

(
x−3εk

ε

)
(21.4.3)

is identically 1 on the interval [a,b] and vanishes outside the interval [a− ε,b+ ε],
where a= (3M−1)ε and b= (3N+1)ε .

Lemma 21.4.2. For each f ∈ L1,

lim
ε→0

∫ ∞

−∞

∫ ∞

−∞

∣∣[ε u(ε(x− y))− ε u(εx)] f (y)
∣∣dydx = 0. (21.4.4)
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Proof: Letting t = εx and reversing the order of integration, the integral is
∫ ∞

−∞

∫ ∞

−∞

∣∣ f (y)[u(t− εy)−u(t)]
∣∣dt dy

=
∫∫

|y|>N
+

∫∫
|y|<N,|t|>2N

+
∫∫

|y|<N,|t|<2N
= I1+ I2+ I3.

Assume that 0< ε ≤ 1. Then |y|<N, |t|> 2N implies that |t−εy|> |N|. Therefore

|I1|+ |I2| ≤ 2||u||
∫
|y|>N

| f (y)|dy+ || f || ·2
∫
|t|>N

|u(t)|dt,

and both terms on the right have limit zero as N → ∞. But also

|I3| ≤ || f ||
∫
|y|<N,|t|<2N

|u(t− εy)−u(t)|dt,

and for each fixed N the integrand converges uniformly to zero. �

Lemma 21.4.3. The subring Rc is dense inR0.

Proof: The inverse transform of the convolutionU ∗U is 2πu2, which is non-negative
and integrable. In particular, the family of functions

Gε(x) =
1
cε

u
( x

ε

)2
, c =

∫ ∞

−∞
u(x)2 dx

is easily seen to be an approximate identity. Therefore given any f ∈ L1, the func-
tions Gε ∗ f converge to f with respect to the L1 metric. On the other hand, the
Fourier transform of Gε ∗ f is the product of f̂ with

1
c
U ∗U(εξ ),

which has compact support. Therefore f̂ is in the closure of Rc. �

Finally we come to the tauberian theorem of Wiener [142].

Theorem 21.4.4. If F belongs toR0 and has no zeros, then the ideal

FR0 = {FG : G ∈R0} (21.4.5)

is dense inR0.

Proof: Consider the quotient

U(ξ/ε)
F(ξ )

=
U(ξ/ε)

F(0)+U(ξ/2ε)[F(ξ )−F(0)]
. (21.4.6)
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This identity holds because U(ξ/ε) �= 0 implies that U(ξ/2ε) = 1. Now U(ξ/2ε)
is the Fourier transform of

uε(x) ≡ 2ε u(2εx); (21.4.7)

Exercise 7. ThereforeU(ξ/2ε)[F(ξ )−F(0)] is the Fourier transform of

uε ∗ f (x)−uε(x)F(0) =
∫ ∞

−∞
uε(x− y) f (y)dy−uε(x)

∫ ∞

−∞
f (y)dy. (21.4.8)

By Lemma 21.4.2 (with 2ε in place of ε), the L1 norm of the function (21.4.8) is
≤ 1

2 |F(0)| for sufficiently small ε . Thus for such ε ,
∣∣∣∣
∣∣∣∣U(ξ/2ε)[F(ξ )−F(0)]

F(0)

∣∣∣∣
∣∣∣∣ ≤ 1

2
.

The identity (21.4.6) can be written

U(ξ/ε)
F(ξ )

=
U(ξ/ε)
F(0)

∞

∑
n=0

[
U(ξ/2ε)[F(ξ )−F(0)]

F(0)

]n
,

and we have shown that for small ε , the series converges in norm. Therefore
V (ξ/ε) =U(ξ/ε)/F(ξ ) belongs toR0 and

U(ξ/ε) = F(ξ )V (ξ/ε).

The same argument applies to translates, so for each ξ0 there is a choice of ε > 0
and a functionWξ0 ∈R0 such that

U(ξ0+ξ/ε) = F(ξ )Wξ0(ξ/ε).

Suppose now that G belongs to Rc. Since |F(ξ )| is bounded away from zero,
the previous argument shows that for some ε > 0 we can find a sum S of the form
(21.4.3) that is identically 1 on the support of G, such that S/F belongs to R0.
Therefore

G = SG = F · S
F
G.

Thus the ideal FR0 contains Rc, which is dense inR0 by Lemma 21.4.3. �

The non-vanishing condition is necessary. In fact suppose that F ∈R0 vanishes
at ξ0. We may find H ∈ R0 such that H(ξ0) = 1; for example choose a positive
function h0 with integral

∫ ∞
−∞ h0(x)dx = 1, let h(x) = eixξ0h0(x), and H = ĥ. Then

for each G ∈R0,

||FG−H|| ≥ |F(ξ0)G(ξ0)−H(ξ0)| = 1.

It is not obvious why Theorem 21.4.4 is called a tauberian theorem. A second
formulation makes it clearer, by showing that the non-vanishing of F implies that
certain averaging methods can be compared. We need one simple lemma.
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Lemma 21.4.5. Suppose that g1 belongs to L1 and h : R → C is bounded. If h(x)
has a limit as x→ ∞, then

lim
x→∞

∫ ∞

−∞
g1(x− y)h(y)dy = lim

x→∞
h(x)

∫ ∞

−∞
g1(y)dy. (21.4.9)

Proof: Subtracting a constant, we may assume that h(x)→ 0. If x > 2N and y< N,
then x− y> N and

∫
|g1(x− y)h(y)|dy =

∫
y<N

|g1(x− y)h(y)|dy+
∫
y>N

|g1(x− y)h(y)|dy

≤
∫
t>N

|g1(t)|dt · sup
y
|h(y)|+

∫ ∞

−∞
|g1(t)|dt · sup

y>N
|h(y)|.

Both terms converge to zero as N → ∞. �

Theorem 21.4.6. (Wiener tauberian theorem, version 2). Suppose that f and g
belong to L1 and suppose that the Fourier transform F of f has no zeros. If k is
a bounded function such that

lim
x→∞

∫ ∞

−∞
f (x− y)k(y)dy = A

∫ ∞

−∞
f (y)dy, (21.4.10)

then also

lim
x→∞

∫ ∞

−∞
g(x− y)k(y)dy = A

∫ ∞

−∞
g(y)dy. (21.4.11)

Proof: It is easily checked that the L1 limit of a sequence of functions gn that satisfy
(21.4.11) also satisfies (21.4.11). Therefore it is enough to show that the set of such
functions is dense in L1. Suppose the Fourier transform of g belongs to Rc. By
the proof of Theorem 21.4.4 we know that there is a function G1 in R0 such that
G=G1F . Let g1 be the inverse Fourier transform of G1. Then g= g1 ∗ f , so Lemma
21.4.5 applies to g1 and

h(x) =
∫ ∞

−∞
f (x− y)k(y)dy

gives (21.4.11). �

As an illustration, suppose that the Fourier transform of f has no zeros and k is a
bounded function such that (21.4.10) is true. Let g be the function

g(x) = 1 if −1< x< 0, g(x) = 0, otherwise.

Then ∫ ∞

−∞
g(x− y)k(y)dy =

∫ x+1

x
k(y)dy ∼ A. (21.4.12)

In particular, if k satisfies some sort of slow oscillation condition, such as
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lim
x→∞

∫ x+1

x
|k(y)− k(x)|dy = 0, (21.4.13)

then limx→∞ k(x) = A; see Exercise 10.

Wiener showed that Theorem 21.4.6 could be used to derive Littlewood’s the-
orem, Theorem 21.2.2, and Ikehara’s theorem, Theorem 21.3.2. We note that one
of the transformations that Wiener used was (21.3.12). The specific function f in
(21.3.12) has a nowhere vanishing Fourier transform; see Exercise 8 (d).

21.5 A theorem of Malliavin and applications

The tauberian theorems considered above give asymptotic results, but with no esti-
mate of the rate of convergence. An example of a result with an error estimate,
obtained by taking advantage of information in the complex plane, is a theorem of
Malliavin [95]. The setting of the theorem is a transform known (up to a possible
sign change) as the Stieltjes transform

α(s) →
∫ ∞

0

dα(λ )
λ − z

=
∫ ∞

0
fy(x−λ )dα(λ ),

where z= x+ iy and fy(x) =−1/(x+ iy). If α ′(t) = k(t), this has the form (21.4.10),
but with an extra parameter that allows for more information.

Malliavin’s result was generalized by Pleijel [116]. The (relatively) simple proof
here is due to Pleijel.

Theorem 21.5.1. (Malliavin) Suppose that

f (z) =
∫ ∞

0

dσ(λ )
λ − z

(21.5.1)

satisfies the estimate

f (z) = a(−z)α +O(zβ ), −1< α < 0, β < α, (21.5.2)

as z→ ∞ along the curve L = {t± itγ , t ≥ 0}, where 0≤ γ < 1. Then as X → ∞,

σ(X)−σ(0) = aXα+1 sinπ(α +1)
π(α +1)

+O(Xα+γ)+O(Xβ+1)+A, (21.5.3)

where O(Xβ+1) should be replaced by O(logX) if β =−1.

Proof: We may modify the curve L near the origin so that L avoids the line of inte-
gration {λ : λ ≥ 0}. For large X , let L(Z) denote the portion of the curve starting at
Z̄ = X− iy and ending at Z = X + iy, Y = X γ . Note that the assumptions imply that

Y f (Z) = O(Xα+γ). (21.5.4)
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Now

I(Z) ≡ 1
2πi

∫
L(Z)

f (z)dz (21.5.5)

=
1
2πi

∫
L(Z)

[ f (z)−a(−z)α ]dz+
a
2πi

∫
L(Z)

(−z)α dz

= I1(Z)+ I2(Z).

As Z → ∞,

I1(Z) =

⎧⎪⎨
⎪⎩
O(Xβ+1) if −1< β < 0,

O(logX) if β =−1,

A+O(Xβ+1) if β <−1.

(21.5.6)

The second integral I2(Z) is

a
2πi(α +1)

(−1)α [Zα+1− Z̄α+1] =
a

π(α +1)
|Z|α+1 sin[(α +1)(π − argZ)].

= aXα+1 sinπ(α +1)
π(α +1)

+O(Xα+γ). (21.5.7)

To complete the proof we need to show that

I(Z)−σ(X)+σ(0) = O(Xα+γ). (21.5.8)

If we insert into (21.5.5) the definition of f and change the order of integration, we
find

I(Z) =
1
π

∫ ∞

0
ν(Z,λ )dσ(λ ), (21.5.9)

where ν(Z,λ ) is the angle between the negative real direction and the direction from
λ to Z; see Figure 21.2. This means that

λ −Z = |λ −Z|e−iν

so

Z = X + iY

= X + iXγ

ν

L

λ

Fig. 21.2 The angle ν
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Y
λ −Z

=
Y

|λ −Z| e
iν = sinν(cosν + isinν) = 1

2 sin(2ν)+ isin2 ν .

It follows that

Y f (Z) =
1
2

∫ ∞

0
sin2ν dσ(λ )+ i

∫ ∞

0
sin2 ν dσ(λ ). (21.5.10)

Note also that λ < X if and only if ν > π/2, so for some c> 0,

λ < X ⇒ |ν −π − 1
2 sin2ν | ≤ c sin2 ν ;

X < λ ⇒ |ν − 1
2
sin2ν | ≤ c sin2 ν .

Therefore

I(Z)− 1
π
Y Re f (Z) =

1
π

∫ ∞

0
(ν − 1

2 sin2ν)dσ(λ )

=
∫ X

0
dσ(λ )+

1
π

∫ X

0
(ν −π − 1

2 sin2ν)dσ(λ )+
1
π

∫ ∞

X
(ν − 1

2 sin2ν)dσ(λ )

= σ(X)−σ(0)+
1
π

∫ X

0
(ν −π − 1

2 sin2ν)dσ(λ )+
1
π

∫ ∞

X
(ν − 1

2 sin2ν)dσ(λ ).

Combining this with (21.5.10) and (21.5.11),

|I(Z)−σ(X)+σ(0)| ≤ 1
π
|Y Re f (Z)|+ c

π
|Y Im f (Z)|.

Together with (21.5.4), this inequality implies (21.5.8). �

One might well ask: under what circumstances would one have the kind of infor-
mation (21.5.2) along a curve in C? And what use would one make of it? Here is a
brief description. Suppose that M is a compact manifold with a Riemannian metric
and A is the corresponding Laplace–Beltrami operator. The easiest example is the
n-torus

Tn = {(ω1,ω1, . . . ,ωn)}, ω j ∈ C, |ω j|= 1.

This can be coordinatized with ω j = eix j , and the Laplace–Beltrami operator for
the flat metric is

A = −
(

∂ 2

∂x12
+

∂ 2

∂x22
+ · · ·+ ∂ 2

∂xn2

)
.

For this example it is easy to find the eigenvalues, i.e. the constants λ j such that
Au = λu has a non-zero solution u(x1, . . . ,xn). In the general case one can show
that the eigenvalues are positive and that the associated L2 space has an orthonormal
basis consisting of eigenvectors:

Aϕn = λnϕn, 0< λ1 ≤ λ2 ≤ ·· · ≤ λn . . . .

For z ∈ C\R, the solution of (A− z)u= f is given by a resolvent kernel Rz:
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u(x) =
∫
M
Rz(x,y) f (y)dm(y).

Expanding in normalized eigenfunctions, one finds that

Rz(x,y) = ∑(λn− z)−1ϕn(x)ϕn(y).

In particular ∫
M
Rz(x,x)dm(x) = (λ − z)−1∑λn.

Setting n(λ ) equal to the number of eigenvalues (counting multiplicity) ≤ λ , we
may write the last sum as a Stieltjes integral:

∫ ∞

0

1
λ − z

dn(λ ).

It is possible to get fairly detailed asymptotic information about the resolvent kernel
Rz, and therefore to deduce information about the asymptotic distribution of the
eigenvalues {λn}, of the form

n(λ ) ∼ aλ n/2+O(λ (n−1)/2).

For this and other references, see Agmon [3]

Exercises

1. Show that (21.0.3) implies (21.0.4).
2. Suppose that the sequence {sn} is non-decreasing. Show that (21.0.4) implies

(21.0.3).
3. (a) Consider the example (21.1.7). Show that f = g′ satisfies f ′ = O(xε−1) and

that (21.1.1) is satisfied with A= 0, but (21.1.3) is not satisfied.

(b) Show that for any decay condition weaker than (21.1.2), i.e. a condition
f ′(x) = O[η(x)], where η(x)/x → ∞ as x → ∞, there is an example for which
(21.1.1) holds but (21.1.3) does not.

4. Prove (21.3.3).
5. Show that Karamata’s theorem (say with a= 1) can fail if α is not monotone.
6. (a) Translate Ikehara’s theorem to a particular case of Karamata’s theorem with

a= 1.

(b) Show that the conclusion from Ikehara’s theorem implies the conclusion of
the corresponding case of Karamata’s theorem.

7. Verify thatU(ξ/2ε) is the Fourier transform of the function (21.4.7).
8. Show that each of the following functions has a nowhere vanishing Fourier

transform.

(a) f (x) = e−|x|.
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(b) f (x) = 0, x< 0, f (x) = e−x, x≥ 0.

(c) f (x) = e−x2/2.

(d) f (x) = ex exp(−ex).
9. (a) Suppose that g belongs to L1, k is bounded, and limx→+∞ k(x) = A. Prove

that
lim

x→+∞

∫ ∞

−∞
g(x− y)k(y)dy = A

∫ ∞

−∞
g(y)dy.

(b) Deduce the non-oscillatory version of Theorem 21.4.6: if k is bounded and
non-decreasing, then (21.4.10) implies (21.4.11).

10. Suppose that f and k satisfy the hypotheses of Theorem 21.4.6.
Show that if k satisfies (21.4.13), then k has limit A as x→ ∞.

11. The next exercises present generalizations of the discrete and continuous ver-
sions of Hardy’s theorem in Section 21.1.
The fractional integral of order α > 0 of a continuous function f : [0,∞)→ C

is defined for x≥ 0 by

Iα f (x) =
1

Γ (α)

∫ x

0
(x− y)α−1 f (y)dy

A related averaging method is

Ja f (x) =
Γ (a+1)

xα Iα f (x) =
α
xα

∫ x

0
(x− y)α−1 f (y)dy.

Prove that if limx→∞ f (x) = A, then limx→∞ Jα f (x) = A.
12. Conversely, let g(x) = xαJα f (x) and suppose that limx→∞ Jα f (x) = A. Suppose

also that f satisfies

| f (x+h)− f (x)| ≤ K
hα

xα , h≥ h0. (21.5.11)

Let g= xαJα f and use the assumption on the limit of Jα f to estimate

g(x+h)−g(x)
hα − A

Γ (x+1)
.

Use (21.5.11) to estimate

g(x+h)−g(x)
hα − f (x)

Γ (α +1)
.

13. Use the previous exercise to show that the assumption limJa f (x) = A and the
tauberian condition (21.5.11) imply that limx→∞ f (x) = A. Note that the case
α = 1 is Hardy’s theorem as in Section 21.1.

14. Given a real or complex sequence a = {an}∞
n=1 and an index α > 0, define the

average sequence a(α) to be the sequence with terms
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a(α)
n =

α
n

n

∑
k=1

(
1− k

n

)α−1

ak.

(These are closely related to Cesàro (C,α) means.) Use Exercise 13 or an
analogous argument to show that if a has limit A, then so does a(α).

15. Use Exercise 13 or an analogous argument to show that if a(α) has limit A and

|an+k−an| ≤ K
kα

nα , k > 0,

then a has limit A. With α = 1, this is Hardy’s tauberian theorem for series.

Remarks and further reading

For more on the history of the subject and further developments, see Wiener [143],
Korevaar [77], and Choimet and Queféllec [33].



Chapter 22
Asymptotics and the method
of steepest descent

In both pure and applied mathematics, a number of questions lead to estimating
integrals of the type ∫

C
g(z)eλ f (z) dz (22.0.1)

as the parameter λ becomes large. Here we assume that g and f are holomorphic
in some domain Ω , and C is a curve subject to some constraints. Typically the
endpoints of C are fixed (the positions possibly depending on λ ). Moreover, the
domain Ω is usually simply connected, so, given the endpoints, the value of the
integral is independent of the choice of the curve C. The idea is to choose a curve
that makes the estimation as easy as possible.

In this chapter we describe the general strategy known as the “method of steepest
descent” and then apply this method to two examples: the asymptotics of the Airy
integral, and the Hardy–Ramanujan asymptotics for the number-theoretic partition
function.

22.1 The method of steepest descent

Consider the integral (22.0.1) with fixed endpoints (possibly at infinity). Assume for
now that the parameter λ is real and positive. Let f (x+ iy) = u(x,y)+ iv(x,y), where
u and v are real, and assume that f is not constant. (We shall also abuse notation and
write u(z), v(z) as convenient.) As the parameter λ in (22.0.1) becomes large, it is
clear that the main contribution to the integral will come from the part of the curve
where u is largest.

If there is a curve in the admissible domain Ω such that the maximum value of u
occurs at an endpoint, then only behavior at or near that endpoint is relevant to the
asymptotics. Assume, instead, that on each admissible curve u reaches a maximum
value greater than the value at the endpoints. Suppose that C is such a curve, and
that the maximum value is attained at a point z0. If the gradient of u is not zero at
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y

x

u

path of steepest descent of u = Ref

Fig. 22.1 Steepest descent path

z0, then by displacing the curve slightly to the left or right, we can reduce the value
of u on a stretch of the curve. Thus what we need to examine is the case that the
maximum of u on the curve occurs at a critical point z0: ux(z0) = uy(z0) = 0. The
Cauchy–Riemann equations imply that also vy(z0) = vx(z0) = 0, so z0 is a zero of
f ′. Note that u cannot have a local maximum at z0, since then |exp( f )| would have a
maximum, contradicting the strong maximum principle (Corollary 4.2.2). Therefore
z0 is a saddle point of some sort for the surface {z,u(z))} ∈ C×R≡ R

3.
Let us assume that at each critical point z0 that needs to be considered, f ′′(z0) �= 0.

Then, up to a translation and rotation, the surface looks, locally, like the one pictured
in Figure 22.1. There are two paths on the surface that follow the gradient of u and
pass through u(z0). On one path, u is increasing most rapidly, and on the other
path u is decreasing most rapidly, as z moves away from z0. The Cauchy–Riemann
equations imply that the gradient of u is orthogonal to the gradient of v, so v is
constant along these paths. In particular, near a critical point on a curveC, the curve
can be adjusted to follow (at least for a while) the path of steepest descent, and the
principal contribution to the integral (22.0.1) along the curve will come from such
portions of the curve.

In view of this discussion, the problem comes down to examining an integral
(22.0.1), whereC now denotes a portion of the path of steepest descent near a critical
point u(z0). Near z0,

f (z) = f (z0)− (z− z0)2 f1(z) = f (z0)− (z− z0)2 a [1+O(z− z0)]

and, by assumption, a = f1(z0) = − f ′′(z0)/2 �= 0. The imaginary part of f is con-
stant along C and the real part is less than Re f (z0) except at z = z0. Therefore
(z− z0)2 f1(z) is positive except at z0. We make a determination of a1/2, and use the
principal square root of the term in braces to write

f (z) = f (z0)− t(z)2, t(z) = (z− z0)a1/2[1+O(z− z0)]1/2,

with t2 > 0 on C except at z= z0. By the inverse function theorem, Theorem 1.3.8,
z can be obtained as a holomorphic function of t near z= z0:
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z = w(t).

Then the integral we are considering can be written

I(λ ) = eλ f (z0)
∫ δ

−δ
e−λ t2g(w(t))w′(t)dt, (22.1.1)

for some δ > 0.

We need two more observations. First, (g ◦w)w′ can be expanded in a power
series, and terms that vanish more rapidly at z = z0 will contribute less to the inte-
gral. Therefore we may obtain an asymptotic expansion by integrating term-by-
term. Second, each such term of the integral in (22.1.1) has the form

∫ δ

−δ
e−λ t2cnt

n dt.

It is easily seen that, modulo an error term that is O(e−λδ 2
), this integral can be

replaced by ∫ ∞

−∞
e−λ t2cnt

n dt.

The integrand is odd, so the result is 0 if n is odd. Otherwise we obtain

2cn

∫ ∞

0
e−λ t2tn dt = cnλ−(n+1)/2

∫ ∞

0
e−ss(n−1)/2 ds

= cnλ−(n+1)/2Γ
(
n+1
2

)
, if n is even. (22.1.2)

(See (10.2.2) for the evaluation of the integral.) If g(z0) �= 0, then the leading coeffi-
cient is g(z0)/[− f ′′(0)/2]1/2. Since Γ ( 12 ) = π1/2, the leading term of the expansion
in this case is

I(λ ) ∼ g(z0)
[

2π
−λ f ′′(z0)

]1/2
eλ f (z0). (22.1.3)

22.2 The Airy integral

The Airy integral is

Ai(z) =
1
2πi

∫ i∞

−i∞
exp

(
w3

3
− zw

)
dw.

The path of integration can be modified so that, for large w, it lies in the part of the
domain {Rew3 < 0} that adjoins the imaginary axis:



318 22 Asymptotics and the method of steepest descent

{
−π

2 < argw<−π
2 if Imw� 0;

π
6 < argw< π

2 if Imw	 0.
(22.2.1)

(See Exercise 1.) Thus we consider

Ai(z) =
1
2πi

∫
C
exp

(
w3

3
− zw

)
dw, (22.2.2)

where the curve C lies in the domain (22.2.1). The function so defined is entire in
z. At the start, we assume z > 0 and consider the asymptotics of Ai(z) as z→ +∞.
The integral can be put into the form (22.0.1) by a change of scale: let ω = z−1/2w.
Since we are assuming here that z> 0, the curve followed by ω will lie in the same
domain (22.2.1). The integral now has the form

Ai(z) =
z1/2

2πi

∫
C
exp

{
z3/2

(
ω3

3
−ω

)}
dω

=
z1/2

2πi

∫
C
eλ f (ω) dω, (22.2.3)

with

λ = z3/2, f (ω) =
ω3

3
−ω.

The critical points of the integrand occur where 0= f ′(ω) = ω2−1, i.e. at ω =±1.
Now

f (σ + iτ) =
(

σ3

3
−στ2−σ

)
+ i

(
σ2τ − τ − τ3

3

)
.

Then Im f (±1) = 0. The curves with imaginary part zero that pass through ±1
are determined by τ = 0 or 1

3τ2 = σ2− 1. Since u(σ ,0) = 1
3σ3−σ has a local

maximum at σ = −1 and a local minimum at σ = 1, it follows that the branch of
the hyperbola τ2 = 3(σ2−1) is a path of steepest descent from the critical point at
ω = 1. Moreover, this path lies in the domain (22.2.1); see Figure 22.2.

Following the prescription in Section 22.1, we write

f (ω) = f (1)+
f ′′(1)
2

(ω −1)2+
f ′′′(1)
6

(ω −1)3

= −2
3
− (ω −1)2(−1)[1+ 1

3 (ω −1)]

= −2
3
− t2(ω), t±(ω) = ∓i(ω −1)

[
1+

1
6
(ω −1)+ . . .

]
.

In this case, t may be defined globally along the curve, since Re(ω − 1) stays
positive. Note that for ω in the upper half of the curve C, we have dω/dt =
1/(dt+/dω) = i, and dω̄/dt = 1/(dt−/dω) = −i at ω = 1 (i.e. at t = 0). Thus
our integral is
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σ

τ eiπ/3∞

e−iπ/3∞

−1 1

Fig. 22.2 Steepest path for Ai(z)

z1/2

2πi
e−

2
3λ

∫ ∞

−∞

(
dω
dt

− dω̄
dt

)
e−λ t2 dt =

e−
2
3 z

3/2

2π1/2z1/4

[
1+O(z−3/2)

]
. (22.2.4)

We assumed up to this point that z was positive. The steepest descent curve is
asymptotic to the rays that bisect the domain (22.2.1). It follows that w = ωz1/2

belongs to the domain (22.2.1) so long as

|argz| ≤ π
3
−δ , δ > 0. (22.2.5)

Therefore the estimate (22.2.4) is valid uniformly for z in the sector (22.2.5).

22.3 The partition function and the Hardy–Ramanujan formula

If n is a positive integer, the partition function p(n) is the number of ways of writing
n as a sum of positive integers in non-increasing order. By convention, p(0) = 1 (see
below for an explanation). Clearly p(1) = 1, while

2= 2= 1+1, 3= 3= 2+1= 1+1+1,

4= 4= 3+1= 2+2= 2+1+1= 1+1+1+1,

so p(2) = 2, p(3) = 3, p(4) = 5. It can easily be checked that p(5) = 7, p(6) = 11,
p(7) = 15, and p(8) = 22. This gives some hint of how rapidly p(n) grows. Our
goal is to derive a result of Hardy and Ramanujan:

p(n) ∼ 1

4n
√
3
exp

(√
2
3

π n1/2
)

(22.3.1)

as n→ ∞.
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Euler noted that for |w|< 1,

∞

∏
m=1

1
1−wm =

∞

∑
n=0

p(n)wn; (22.3.2)

see Exercise 3. (This explains the convention that p(0) = 1.) We can pick out the
coefficient p(n) by using the fact that

1
2πi

∫
|w|=r

wn−m dw
w

=

{
1 if n= m,

0 if n �= m.
(22.3.3)

It will be convenient to change variables here. Letting w= e2πiz, Imz> 0, we have

f (z) ≡
∞

∏
m=1

1
1− e2πimz =

∞

∑
n=0

p(n)e2nπiz. (22.3.4)

Let L denote the line segment

L = {z : z= x+ iδ , − 1
2 ≤ x≤ 1

2},

where 0< δ < 1. As z runs along L, w= e2πiz runs around the circle |w| = e−2πδ .
Therefore picking out p(n) by using (22.3.3) with (22.3.4) gives

p(n) =
∫
L
f (z)e−2nπiz dz. (22.3.5)

A key role in the analysis of f is played by the functional equation for f . The
proof is given in Section 22.4.

Theorem 22.3.1. The function f satisfies the functional equation

f (z) =
√

z
i
exp

(
iπ
12

[
z+

1
z

])
f

(
−1
z

)
. (22.3.6)

Taking the logarithm of (22.3.4) and using (1.5.2), we find that

f (z) = 1+O(e−2πImz) if Imz≥ 1. (22.3.7)

Applying this to f (−1/z), and taking into account the functional equation (22.3.6),
suggests writing

p(n) = p1(n)+E(n) =
∫
L

√
z
i
eiπ(z+1/z)/12 e−2nπiz dz+E(n). (22.3.8)

Let us estimate the remainder term

E(n) =
∫
L

√
z
i
eiπ(z+1/z)/12 [ f (−1/z)−1] e−2nπiz dz. (22.3.9)
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For z= x+ iδ in L, Imz= δ and Im(−1/z) = δ/(δ 2+ x2). Thus
∣∣∣∣
√

z
i
eiπ(z+1/z)/12e−2nπiz

∣∣∣∣ = |z|1/2 eπ[−δ+δ/(δ 2+x2)]/12e2nπδ

= O
(
eπδ/[12(δ 2+x2)]e2nπδ

)
. (22.3.10)

For x close to 0, δ/(δ 2+ x2)≥ 1. When this is the case, (22.3.7) gives

| f (−1/z)−1| = O(e−2πδ/(δ 2+x2)).

Combining this with (22.3.9) we see that the part of the integral (22.3.9) where
Im(−1/z)≥ 1 is O(e2nπδ ).

For z = x+ iδ in L, with x close to ±1/2, it follows that δ/(δ 2 + x2) ≤ 1. To
estimate the part of the integral (22.3.9) in this range we note first that with Imz> 0
we have |1− e2nπiz| ≥ |1− e−2nπImz|, so

| f (z)| ≤ f (i Imz). (22.3.11)

Suppose that z= x+ iy, 0< y≤ 1. Then f (−1/iy) = f (i/y), so (22.3.7) implies that
f (i/y) = O(1). Therefore (22.3.6) implies

| f (z)| ≤ f (iy) = O(eπ/12y), y= Imz≤ 1.

Applying this to f (−1/z) for z ∈ L, we obtain

| f (−1/z)| = O
(
eπ(δ 2+x2)/12δ

)
= O

(
eπ/48δ

)
, (22.3.12)

if δ/(δ 2 + x2) ≤ 1. The same estimate applies, in this case, to | f (−1/z)− 1|.
Taking into account (22.3.10), we find that the part of the integral (22.3.9) where
Im(−1/z)≤ 1 is O(eπ/48δ e2nπδ ). Altogether, then,

|E(n)| = O(eπ/48δ e2nπδ ).

This estimate is optimal when 2πnδ +π/(48δ ) is minimal, which occurs for δ =
δn = 1/4

√
6n and gives the estimate

|E(n)| = O(eKn
1/2/2), K = π

√
2
3
. (22.3.13)

It remains to estimate the integral defining p1(n) in (22.3.8). The proof presented
here is based on the presentation in Stein and Shakarchi [132].

Theorem 22.3.2. (Hardy–Ramanujan) If p(n) denotes the partition function, then

(i) p(n)∼ 1

4n
√
3
eKn

1/2
as n→ ∞, where K = π

√
2
3 .
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0
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L−1
2 + i 1

2 + i

L

−1
2

1
2

Fig. 22.3 Contours L and L′

(ii) More precisely

p(n) =
1

2π
√
2

d
dn

{
eK(n−

1
24 )

1/2

(n− 1
24 )

1/2

}
+O(e

K
2 n

1/2
).

Proof: First we modify the contour L in Figure 22.3 by adding to it two small vertical
line segments that join− 1

2 to− 1
2 + iδ and 1

2 + iδ to 1
2 . We label the new contour L′;

see Figure 22.3.
Note that

√
z/i eiπ/12z is O(1) on the two added segments. Therefore for the

integral p1(n) in (22.3.8), the addition contributes

O(e2πnδ ) = O(e2πn1/2/4
√
6) = O(eKn

1/2/4),

which is smaller than the allowed error. Therefore, we may incorporate this contri-
bution into the error term E(n). Without introducing further notation we will rewrite
p1(n) with L replaced by L′ in the integral defining p1(n), namely,

p1(n) =
∫
L′

√
z
i
eiπ(z+1/z)/12 e−2πinzdz. (22.3.14)

Next we make a change of variables z= μz′ so that the exponential functions are
combined into one of the form

exp

{
iA

(
1
z
− z

)}
.

This can be achieved by choosing

A =
π√
6

(
n− 1

24

)1/2

and μ =
1

2
√
6

(
n− 1

24

)−1/2

. (22.3.15)

The result is

p1(n) = μ3/2
∫

Γ
e−λF(z′)

√
z′

i
dz′, (22.3.16)
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0

0

−1 1

Γ
−an + iδ an + iδ

−an an

Γ∗

−an an

−an an

Fig. 22.4 Contours Γ and Γ ∗

where

F(z′) = i(z′ − 1
z′
), λ =

π√
6

(
n− 1

24

)1/2

, (22.3.17)

and the contour Γ = μ−1L′ is now the union of three segments [−an,−an + iδ ′],
[−an+ iδ ′,an+ iδ ′] and [an+ iδ ′,an]. Here an = 1

2μ−1 =
√
6
(
n− 1

24

)1/2 ≈ √
6n,

while δ ′ = δ μ−1 = 2
√
6

(
n− 1

24

)1/2
/4
√
6n∼ 1/2, as n→ ∞.

We apply the method of steepest descent to the integral (22.3.16). Note that the
phase function F(z) = i

(
z− 1

z

)
has only one critical point z = i in the upper half

plane. Furthermore, the two curves passing through i on which F is real are the
imaginary axis and the unit circle. On the imaginary axis, F has a maximum at
z= i. On the unit circle, F has a minimum at z = i. Thus we deform the contour Γ
into the contour Γ ∗, which consists of the segments [−an,−1] and [1,an], together
with the upper semicircle joining −1 and 1; see Figure 22.4.

Then

p1(n) = μ3/2
∫

Γ ∗
e−sF(z)

√
z
i
dz.

The contributions from the integral on the segments [−an,−1] and [1,an] are small,
because on the real axis the exponential has absolute value 1 and the integrand is

bounded by sup|z|≤an |z|1/2. This yields an error of the order O(a
3/2
n μ3/2) = O(1).

Finally, we come to the principal part, which is the integral on the semicircle,
oriented in the negative direction. Let us write z = eiθ . Then, i(z− 1

z ) = −2sinθ
and dz= ieθdθ . This gives the contribution

−μ3/2
∫ π

0
e2ssinθ ei3θ/2√idθ

= μ3/2
∫ π/2

−π/2
e2scosθ

(
cos

3θ
2

+ isin
3θ
2

)
dθ .

To apply formula (22.1.3), we take λ = 2s, f (θ) = cosθ and g(θ) = cos 3θ
2 + isin θ

2 .
Then f (0) = g(0) = 1 and f ′′(0) =−1. Thus, the above quantity is equal to
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μ3/2e2s
√
2π

(2s)1/2

[
1+O(s−1/2)

]
.

Since s= π√
6
(n− 1

24 )
1/2, 2π√

6
= π

√
2
3 = K and μ =

√
6

12 (n− 1
24 )

−1/2, we obtain

p(n) =
1

4n
√
3
eKn

1/2
[1+O(n−1/4)]

which is the first conclusion of the theorem.

To establish the asymptotic formula in (ii), we retrace some of our earlier steps.
With p1(n) defined by (22.3.14), we write

p1(n) =
d
dn

q(n)+ e(n), (22.3.18)

where

q(n) =
1
2π

∫
L′

√
i
z
eiπ(z+1/z)/12e−2πinzdz, (22.3.19)

L′ is shown in Figure 22.3, and e(n) is the term due to the variation of the contour
L′ = L′n, when forming the derivative in n. (Recall that δ in the contour L′ depends on
n; see (22.3.13).) Using Leibnitz’s formula and estimating the resulting expression
as before, it is easily seen that e(n) = O(e2πnδ ), which we have already seen to be

O(e
K
4 n

1/2
); see the first part of the paragraph containing equation (22.3.14). This

error can therefore be subsumed in the error term E(n). To analyze q(n), we again
make the change of variable z → μz, and then replace the resulting contour Γ by
Γ ∗. As a result, we obtain

q(n) =
μ1/2

2π

∫
Γ ∗

e−λF(z)(z/i)−1/2dz, (22.3.20)

where F(z) = i(z− 1
z ),λ = π√

6
(n− 1

24 )
1/2 and μ = 1

2
√
6
(n− 1

24 )
−1/2; see (22.3.15)

and (22.3.17).
Since F is purely imaginary on the real axis, the two segment [−an,−1] and

[1,an] of the contour Γ ∗ contribute only terms of the order O(a1/2n μ1/2) = O(1).
As in case (i), the main contribution of (22.3.20) comes from the integral on

the semicircle. Setting z = eiθ ,dz = ieiθdθ , and i(z− 1
z ) = −2sinθ shows that the

integral is equal to

−μ1/2

2π

∫ π

0
e2ssinθ eiθ/2i3/2dθ =

μ1/2

2π

∫ π/2

−π/2
e2scosθ

(
cos

θ
2
+ isin

θ
2

)
dθ

=
μ1/2

2π

∫ π/2

−π/2
e2scosθ cos

θ
2
dθ .
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Since cosθ = 1−2(sin θ
2 )

2, we now set x= sin θ
2 . The above integral becomes

μ1/2e2s

π

∫ 1√
2

− 1√
2

e−4sx2dx.

It is easily verified that

∫ 1√
2

− 1√
2

e−4sx2dx=
∫ ∞

−∞
e−4sx2dx+O

(∫ ∞

1/
√
2
e−4sx2dx

)

=
√

π
2s1/2

+O(e−2s); (22.3.21)

see Exercise 4
Gathering all the error terms together gives

p(n) =
d
dn

{
μ1/2 e

2s

π

√
π

2s1/2

}
+O

(
e
K
2 n1/2

)
.

Since s= π√
6
(n− 1

24 )
1/2,μ =

√
6

12 (n− 1
24 )

−1/2 andK= π
√

2
3 , the last equation yields

p(n) =
1

2π
√
2

d
dn

{
eK(n−

1
24 )

1/2

(n− 1
24 )

1/2

}
+O(e

K
2 n

1/2
). �

22.4 Proof of the functional equation (22.3.6)

We use an argument due to Siegel [126] in an expanded and more user-friendly
form. Recall that the generating function f for the partition function is

f (z) =
∞

∏
n=1

1
1− e2πinz .

Note that
q2k

1−q2k
=

1
2

[
1+q2k

1−q2k
−1

]
= −1

2
qk+q−k

qk−q−k −
1
2
.

If q = eiπz, the last expression is

i
2
cotkπz− 1

2
.

In view of this, consider
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log
f (z)

f (−1/z)
= log

∞

∏
n=1

1− e−2nπi/z

1− e2nπiz

=
∞

∑
n=1

[log(1− e−2nπi/z)− log(1− e2nπiz)]

=
∞

∑
n=1

∞

∑
k=1

1
k
[e2nkπiz− e−2nkiπ/z]

=
∞

∑
k=1

1
k

[
e2kπiz

1− e2kiπz
− e−2kiπ/z

1− e−2kiπ/z

]

=
i
2

∞

∑
k=1

1
k
[cot(kπz)+ cot(kπ/z)] .

For fixed z ∈ C+, let
g(s) = cots cot(s/z).

Given some constant ν > 0, the function hν(s) defined by

hν(s) =
g(νs)
s

=
cot(νs) cot(νs/z)

s

has a triple pole at s = 0, and two sequences of simple poles. There are poles at
s = ±kπ/ν with residues (1/kπ)cot(kπ/z), and simple poles at s = ±kπz/ν with
residues (1/kπ)cot(kπz), k = 1,2, . . . . Near s= 0,

g(s) =
[1− 1

2 s
2+O(s4)][1− 1

2 (s/z)
2+O(s4)]

s[1− 1
6 s

2+O(s4)](s/z)[1− 1
6 (s/z)

2+O(s4)]

=
z[1− 1

2 s
2− 1

2 (s/z)
2+O(s4)]

s2[1− 1
6 s

2− 1
6 (s/z)

2+O(s4)]

=
z
s2
[1− 1

2 s
2− 1

2 (s/z)
2][1+ 1

6 s
2+ 1

6 (s/z)
2]+O(s2)

=
z
s2

− z+1/z
3

+O(s2).

It follows that the residue of hν(s) = g(νs)/s at the origin is −(z+ z−1)/3.
Let C be the boundary of the parallelogram with vertices 1,z,−1,−z, oriented

with the parallelogram to the left; see Figure 22.5. Let ν = (n+ 1
2 )π . Then the poles

of hν enclosed by C are the origin and the points

± kπ
n+ 1

2

, ± kπz
n+ 1

2

, k = 1,2, . . .n,

with residues
1

πk
cot(kπz),

1
πk

cot(kπ/z).
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0

z

−z

1
−1

Fig. 22.5 The contour C

Therefore

1
2πi

∫
C
hν(s)ds =

1
2πi

∫
C

g(νs)
s

ds

= − 1
3 (z+ z−1)+

2
π

n

∑
k=1

1
k
[cot(πkz)+ cot(πk/z)].

As ν → ∞, g(νs) is uniformly bounded on C and converges on the respective
sides, minus the corners, to 1,−1,z,−z; Exercise 5. Therefore

lim
ν→∞

∫
C

g(νs)
s

ds =
∫ z

1

ds
s
−

∫ −1

z

ds
s
+

∫ −z

−1

ds
s
−

∫ 1

−z

ds
s

= 4logz−2log(−1) = 4log
z
i
. (22.4.1)

Combining these results,

1
2πi

4 · log z
i
+

z+ z−1

3
=

2
π

∞

∑
k=1

1
k
[cot(πkz)+ cot(πk/z)]

=
4
iπ

log
f (z)

f (−1/z)
,

or
1
2
log

z
i
+

iπ
12

(
z+

1
z

)
= log

f (z)
f (−1/z)

. (22.4.2)

Exponentiating (22.4.2) gives (22.3.6). �

Siegel’s argument was designed to prove the functional equation for theDedekind
eta function

η(z) = eiπz/12
∞

∏
n=1

(1− e2nπiz), Imz> 0. (22.4.3)

Obviously this is closely related to the function f ; in fact

f (z) =
eiπz/12

η(z)
. (22.4.4)
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Exercises

1. Show that the path of the Airy integral can be shifted from the imaginary axis
so as to lie in the domain (22.2.1) without changing the value of the integral.

2. Prove that the function Ai(z) is a solution of the differential equation

u′′(z) = zu(z).

3. Prove the identity (22.3.2)
4. Prove (22.3.21).
5. Prove the limiting relation of g(νs) that leads to (22.4.1).
6. The complementary error function erfc(z) has the contour integral representa-

tion

erfc(z) =
1
2πi

∫ c+i∞

c−i∞
es−2z

√
s ds
s
, c> 0.

Use the steepest descent method to derive the asymptotic expansion

erfc(z) ∼ e−z2

z
√

π

(
1− 1

2z2
+

3
4z4

− 15
8z6

+ . . .

)
,

as z→ ∞ in the region |arg(z)| ≤ 3
4π −δ , δ > 0.

7. Hankel’s loop integral representation for the reciprocal of the gamma function
is

1
Γ (z)

=
1
2πi

∫ (0+)

−∞
ett−z dt,

where the logarithm in t−z = e−t logz has its principal value. The path of inte-
gration starts at e−iπ ∞, goes around the origin once, and ends at eiπ ∞. Use the
steepest descent method to show that

1
Γ (z)

∼ ezz−z

√
z
2π

(
1− 1

12z
+

1
288z2

− . . .

)

as z→ ∞ in the region |argz|< 1
2π .

8. Use the method of steepest descent to derive the asymptotic expansion of the
Bessel function

Jα(x) =
1
2πi

∫ (0+)

−∞
t−α−1 exp

{
x
2

(
t− 1

t

)}
dt

as x→ +∞, where α is any complex number, and the loop contour starts from
−∞ on the real axis, passes around the origin in the counterclockwise direction,
and returns to −∞.

9. Consider the function

F(z) =
∫ ∞

0
exp

{
iz

(
t3

3
+ t

)}
dt, 0< argz< π.



22.4 Proof of the functional equation 329

Show that, by rotating the path of integration through an angle ψ , 0 < ψ <
1
3π , F(z) can be continued analytically to the region − 1

3π < argz< π . Use the
steepest descent method to derive the asymptotic expansion

F(z) ∼ i
∞

∑
m=0

(3m)!
m!3m

z−2m−1 (22.4.5)

as z → ∞, uniformly in the sector − 1
3π + δ ≤ argz ≤ π − δ , δ > 0. Note that

this expansion holds, in particular, as z → +∞ through positive real values.
Also, since F(−z) = F(z), the domain of validity of (22.4.5) can be extended
to − 1

3π +δ ≤ argz≤ π + 1
3π −δ .

Remarks and further reading

For more on integral methods in asymptotic analysis, see Wong [145].

The functional equation (22.3.6) is obviously equivalent to the functional equa-
tion for the Dedekind eta function (22.4.3):

η
(
−1
z

)
=

√
z
i

η(z). (22.4.6)

The eta function is closely related to the discriminant Δ = g32−27g23 of the polyno-
mial associated to the Weierstrass℘ function; see Section 17.4. In fact

Δ(z) = (2π)12η24(z).

For this and role of the eta function in number theory, see Apostol [9], Chapter 3.



Chapter 23
Complex interpolation and the
Riesz–Thorin theorem

Often a given vector space has more than one natural norm. For example, the space
of bounded continuous functions f : [0,1]→ C can be equipped with the norms

|| f ||1 =
∫ 1

0
| f (x)|dx, || f ||∞ = sup

x∈[0,1]
| f (x)|.

There are several natural ways to interpolate between these, i.e. to find a scale of
norms || f ||p, 1< p < ∞ that, in some suitable sense, have || f ||1 and || f ||∞ as limits.
One desirable property is that if T is a map from the space to itself that is continuous
with respect to the extreme norms,

||T f ||1 ≤ C1|| f ||1, ||T f ||∞ ≤ C∞|| f ||∞, (23.0.1)

then T is also continuous with respect to the intermediate norms:

||T f ||p ≤Cp|| f ||p, 1< p < ∞. (23.0.2)

Complex interpolation is a very general method for constructing a scale of inter-
mediate spaces between two normed linear spaces, in such a way that the passage
from (23.0.1) to (23.0.2) is valid.

The Riesz–Thorin theorem is a generalization of the passage from (23.0.1) to
(23.0.2) in the context of Lp spaces. This theorem preceded the method of complex
interpolation. Now, as here, it is often presented as a consequence of the method.

23.1 Interpolation: the complex method

A norm on a real or complex vector space X is a non-negative function u → ||u||,
u ∈ X , with the properties:
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||u||= 0 if and only if u = 0;

||au||= |a| ||u|| if a is a scalar;

||u+w|| ≤ ||u||+ ||w||, for every pair u,w in X .

A norm induces a metric d(u,w) = ||u−w||. A normed linear space is a vector
space equipped with a norm. A Banach space is a normed linear space that is
complete with respect to the induced metric.

Suppose that X0 and X1 are two Banach spaces, with norms || ||0, || ||1. Suppose
also that the intersection X0∩X1 is dense in each space. Thus Xj can be thought of as
the completion of X0∩X1 with respect to the norm || || j, j = 0,1. In this context, the
basic problem is to find a natural way to construct intermediate spaces Xθ , 0< θ < 1
with norms || ||θ .

A linear map T : X → Y from one normed linear space to another is said to be
bounded if there is a constant C such that ||Tu||Y ≤ C||u||X , all u ∈ X . Here, of
course, || ||X , || ||Y denote the norms in X and Y , respectively. If T is bounded, the
smallest such constant is denoted by ||T ||. Clearly

||T || = sup
||u||X=1

||Tu||Y .

If one has an interpolation method, a natural question is the following. Suppose
that we interpolate between spaces X0, X1 and also between spaces Y0 and Y1. By an
abuse of notation, we use || ||θ to denote the norm in Xθ or in Yθ , according to the
context. Suppose now that T is a linear map,

T : X0∩X1 → Y0∩Y1,

and T is bounded with respect to the norms || ||0 and || ||1:
||Tu||0 ≤ C0||u||0, ||Tu||1 ≤C1||u||1.

Then is T also bounded as a map from Xθ to Yθ , 0< θ < 1?

The complex method of interpolation is based on Hadamard’s three lines theo-
rem.

Theorem 23.1.1. Suppose that the function f is bounded and holomorphic in the
vertical strip {z : 0< Rez < 1} and continuous on the closure. Let

Mθ = sup
Rez=θ

| f (z)|.

Assume M0 M1 > 0. Then
Mθ ≤ M1−θ

0 Mθ
1 . (23.1.1)

Proof: The first step is to prove that for each z in the strip,

| f (z)| ≤max{M0,M1}. (23.1.2)
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Given ε > 0, let fε(z) = eε(z2−1) f (z). Since Re [(θ + it)2−1]≤−t2, it follows that

| fε(θ + it)| ≤ e−εt2 | f (θ + it)|, 0≤ θ ≤ 1, t ∈ R.

Since f is assumed to be bounded in the strip, it follows that for sufficiently large
t2,

| fε(θ + it)| ≤max{M0,M1}. (23.1.3)

By the maximum principle, this inequality holds throughout the truncated strip

SR = {z : 0≤ Rez ≤ 1, |Imz| ≤ R}
for R sufficiently large. Therefore the inequality (23.1.3) holds throughout the strip.
Since Re [1− (θ + it)2]≤ 1+ t2, it follows that

| f (θ + it)| = |eε(1−z2) fε(θ + it)| ≤ eε(1+t2)max{M0,M1}
throughout the strip. Taking ε → 0, we obtain (23.1.2).

To obtain the estimate (23.1.1), let

g(z) = Mz−1
0 M−z

1 f (z).

Then g is bounded and holomorphic in the strip, and |g(z)| ≤ 1 on the boundary of
the strip. Therefore |g| ≤ 1 in the strip and

| f (θ + it)| = M1−θ
0 Mθ

1 |g(θ + it)| ≤ M1−θ
0 Mθ

1 . �

Suppose now that we want to interpolate between spaces X0 and X1, as above. The
general procedure is to consider the family F of functions f that have the following
properties:

(i) f is a continuous map from the strip with values in the vector space sum X0+
X1 = {u0+u1;u j ∈ Xj},
(ii) f is holomorphic in the interior of the strip,

(iii) f (it) belongs to X0, f (1+ it) belongs to X1, and

(|| f || ≡ max

{
sup
t∈R

|| f (it)||0, sup
t∈R

|| f (1+ it)||1
}

< ∞.

Then for 0 < θ < 1, Xθ consists of those elements u ∈ X0+X1 such that f (θ) = u
for some f ∈ F. The norm is defined by

||u||[θ ] = inf
f∈F, f (θ)=u

|| f ||. (23.1.4)

Here we have been vague about the terms “continuous” and “holomorphic” in the
general case. They will be clear in the cases to be considered here.
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23.2 Lp spaces

The model cases we consider here come under the heading of “Lp spaces,” 1≤ p <
∞. They are, informally,

(a) Lp(R), the space of functions u : R→ C such that

||u||p =
[∫

R

|u(x)|p dx

]1/p

< ∞, 1≤ p < ∞.

For p = ∞ the norm is taken to be the (essential) supremum of |u(x)|.
(b) The periodic versions Lp

per(R) of the preceding spaces. Here the line R is
replaced by the interval (−π,π) and the norm is

||u||p =
[
1
2π

∫ π

−π
|u(θ)|p dθ

]1/p

, 1≤ p < ∞

with a corresponding change for p = ∞.

(c) l p(Z), the space of two-sided complex sequences a= (an)∞
n=−∞, with

||a||p =

[
∞

∑
n=−∞

|an|p
]1/p

, 1≤ p < ∞

and ||a||∞ = sup |an|. In the following, we will often write the sum here in the form
of an integral. (It is in fact an integral with respect to the “counting measure”.)

A detailed study of examples (a) and (b) requires measure theory. Here we shall
work within the space X , consisting of continuous functions f that vanish outside
a bounded interval (depending on f ) in case (a) or are periodic, in case (b). The Lp

spaces (for 1 ≤ p < ∞) are the completions of X with respect to the corresponding
metrics. (In case (c), X consists of sequences each of which has only finitely many
non-zero terms.) Some adjustments need to be made when p = ∞.

The arguments carry over to very general Lp spaces. Here we use results from
Chapter 1.

Lemma 23.2.1. In each of the cases (a), (b), or (c) above, one has Hölder’s inequal-
ity; in the notation of case (a) it is

∣∣∣∣
∫
R

u(x)w(x)dx

∣∣∣∣ ≤ ||u||p||w||q if
1
p
+

1
q

= 1. (23.2.1)

Conversely, for each u ∈ Lp,

||u||p = sup
w∈Lq,||w||q=1

∫
R

|u(x)w(x)|dx. (23.2.2)
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It seems that any reasonable method of interpolation between two Lp spaces of
the same type should produce the Lp spaces with intermediate values of p. This is
indeed the case here.

Theorem 23.2.2. In each of the cases (a), (b), or (c), let X0 = Lp0 and X1 = Lp1 ,
p0 �= p1. Then for 0< θ < 1, the interpolation space Xθ is Lpθ , where

1
pθ

=
1−θ

p0
+

θ
p1

.

Proof: We use the notation associated with case (a). Given u in the space X of con-
tinuous functions with bounded support, and 0 < θ < 1, we may normalize with

∫
R

|u(x)|pθ dx = 1,
1
pθ

= (1−θ)
1
p0

+θ
1
p1

. (23.2.3)

Define f as a map from the strip {z : 0≤ Rez ≤ 1} to X by

f (z,x) =

⎧⎨
⎩

0 if u(x) = 0;

|u(x)|α(z) u(x)
|u(x)| if u(x) �= 0,

where
α(z) = (1− z)

pθ
p0

+ z
pθ
p1

. (23.2.4)

For a given x, | f (z,x)| is independent of Imz. Equations (23.2.3), (23.2.4) imply that

|| f (it, ·)||p0 = 1 = || f (1+ it, ·)||p1 .
so the norm ||u||[θ ] of u as an element of the interpolation space Xθ is at most 1,
which is ||u||pθ .

Suppose now that w is in Lqθ , where 1/pθ + 1/qθ = 1, and suppose also that
||w||qθ = 1. Choose indices q0 and q1 with

1
p0

+
1
q0

= 1 =
1
p1

+
1
q1

,

and let Y0 = Lq0 , Y1 = Lq1 . The index qθ above satisfies

1
qθ

= 1− 1
pθ

= 1−
[
(1−θ)

1
p0

+θ
1
p1

]

= (1−θ)
[
1− 1

p0

]
+θ

[
1− 1

p1

]

= (1−θ)
1
q0

+θ
1
q1

.

By the argument just given for u, the interpolation norm ||w||[θ ] is at most 1. Given
ε > 0, let g and h be two elements of F such that g(θ) = u and h(θ) = w and
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||g|| ≤ ||u||[θ ] + ε , ||h|| ≤ ||w||[θ ] + ε . Then by Hölder’s inequality

∣∣∣∣
∫
R

u(x)w(x)dx

∣∣∣∣ =
∣∣∣∣
∫
R

g(θ ,x)h(θ ,x)dx

∣∣∣∣
≤ (||u||[θ ] + ε)(||w||[θ ] + ε)≤ (||u||[θ ] + ε)(1+ ε).

In view of the second part of Lemma 23.2.1, this implies that ||u||pθ = ||u||[θ ].
�

23.3 Application: the Riesz–Thorin theorem

Theorem 23.3.1. (Riesz–Thorin) Suppose that X0 = Lp0 and X1 = Lp1 are Lp spaces
of the same type (i.e. with respect to the same measure), and suppose that Y0 = Lq0

and Y1 = Lq1 are of the same type as each other, but not necessarily of the same type
as the Xj. Suppose that T , defined on X0∩X1, extends as a bounded map from X0 to
Y0 with norm ||T ||0 and as a bounded map from X1 to Y1 with norm ||T ||1. Then for
0< θ < 1, T extends as a bounded map from the interpolation space Xθ to Yθ , with
norm

||T ||θ ≤ ||T ||1−θ
0 ||T ||θ1 . (23.3.1)

Proof: If p0 = p1 and q0 = q1, there is nothing to prove. Suppose that u and w
are bounded, continuous functions with bounded support. Given 0 < θ < 1, we
normalize with

||u||pθ = 1 = ||w||q′θ ,
where

1
pθ

= (1−θ)
1
p0

+θ
1
p1

;

1
q′θ

= (1−θ)
1
q′0

+θ
1
q′1

= (1−θ)
(
1− 1

q0

)
+θ

(
1− 1

q1

)
.

Let f (z,x) = 0 where u(x) = 0, g(z,x) = 0 where w(x) = 0, and otherwise

f (z,x) = |u(x)|α(z) u(x)
|u(x)| , g(z,x) = |w(x)|β (z) w(x)

|w(x)| ,

where

α(z) = (1− z)
pθ
p0

+ z
pθ
p1

, β (z) = (1− z)
q′θ
q′0

+ z
q′θ
q′1

.

Then

|| f (it, ·)||p0 = || f (1+ it, ·)||p1 = ||u||pθ = 1,

||g(it, ·)||q′0 = ||g(1+ it, ·)||q′1 = ||w||q′θ = 1,
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so
∫
R

|T f (it,x)g(it,x)|dx ≤ ||T ||0;
∫
R

|T f (1+ it,x)g(1+ it,x)|dx ≤ ||T ||1.

Consequently ∣∣∣∣
∫
R

Tu(x)w(x)dx

∣∣∣∣ ≤ ||T ||1−θ
0 ||T ||θ1 .

It follows that ||T ||θ ≤ ||T ||1−θ
0 ||T ||θ1 . �

23.4 Application to Fourier series

We refer here to Chapter 1 and Chapter 4. If u : R→ C is continuous and periodic,
with period 2π , then the Fourier coefficients û are defined by

û(k) =
1
2πi

∫ π

−π
u(x)e−ikx dx, k = 0,±1,±2 . . . .

Since |e−ikx| ≡ 1, it is clear that the map

Tu = {û(k)}∞
k=−∞

extends to map L1
per(R) to l∞(Z) and

||Tu||∞ ≤ ||u||1;
equality is attained if u ≥ 0.

The Riesz–Fischer theorem, Theorem 4.4.3, says that T extends to map L2
per(R)

to l2(Z), and
||Tu||2 = ||u||2.

Therefore T extends to map Lp
per(R) to lq(Z) and

||Tu||q ≤ ||u||p, for 1≤ p ≤ 2,
1
p
+

1
q
= 1. (23.4.1)

Similarly the dual map from sequences to functions,

a = {ak}∞
−∞ → T ∗a =

∞

∑
−∞

ak eikx (23.4.2)

takes l1(Z) to the space of bounded continuous periodic functions and maps l2(Z)
onto L2

per(R), each with norm 1, so
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||T ∗a||q ≤ ||a||p, for 1≤ p ≤ 2,
1
p
+

1
q
= 1. (23.4.3)

The inequalities (23.4.1) and (23.4.3) are the Hausdorff–Young inequalities.

Exercises

1. Prove the following consistency result for iterated interpolation. Let Y0 = Xθ0
and Y1 = Xθ1 , where 0 ≤ θ0 < θ1 ≤ 1 and the Xθ j are interpolations spaces for
X0 and X1. Then for 0< α < 1, Yα = Xθ with θ = (1−α)θ0+αθ1.

2. Suppose that w0 and w1 are positive continuous functions on R. Let

Xj = Lp(R,w jdx) = { f : R→ C :
∫ ∞

−∞
| f (x)|w j(x)dx < ∞}, j = 0,1,

where 1 ≤ p < ∞. Prove that the corresponding interpolation space Xθ is
Lp(R,wθ dx), where

wθ (x) = w0(x)1−θ w1(x)θ , 0< θ < 1.

3. The spaces Hs(R) (and the corresponding spaces in higher dimensions Hs(Rn))
are useful in the study of differential equations. For m a non-negative integer,
Hm(R) can be defined as the completion of the space of Schwartz functions
with respect to the norm

||u||2Hm =
m

∑
j=0

(
m
j

)
||u( j)||2.

The spaces Hs(R), 0 < s < m, are defined by interpolation. Describe these
spaces explicitly, and show that for integers 0 < k < m the two definitions of
Hk(R) are equivalent. (Use the Fourier transform and Exercise 2.)

4. Let A = (ai j) be an infinite matrix with

sup
i, j∈Z

|ai j| = M < ∞. (23.4.4)

(a) Prove that the map x→ Ax,

(Ax)i =
∞

∑
j=−∞

ai jx j

maps Lp(Z) to itself with norm M.

(b) Suppose that A is unitary:

∞

∑
j=−∞

ai jā jk =
{
1 if i = k,
0 if i �= k.
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Prove that A maps L2(Z) to itself with norm 1.

(c) Assuming both (23.4.4) and that A is unitary, prove that A maps Lp(Z) to
Lp′ , 1< p < 2, 1/p+1/p′ = 1, with norm at most M1/p−1/p′ .

5. Prove Stein’s generalization [130] of the Riesz–Thorin theorem: under the other
assumptions of that theorem, assume that the map T = T (z) depends on z, that
for each pair of piecewise constant functions that are integrable with respect to
the measure μ associated to the Xj and with respect to the measure ν associated
to Yj, respectively, the map

z →
∫
[T (z) f ](y)g(y)dμ(y)

is holomorphic in the strip 0 < Rez < 1, and continuous on the closure of the
strip. Suppose also that T (z) is uniformly bounded as a map from X0 to Y0 for
Rez = 0 and from X1 to Y1 for Rez = 1. Then T (θ) extends to a bounded map
from Xθ to Yθ .

Remarks and further reading

Interpolation theory plays a large role in real analysis, functional analysis, and
approximation theory. The complex method was developed circa 1960 by Calderón
[30] and Lions [92]. There are other methods of interpolation based on real analysis.
Both the complex method and the real methods are treated extensively in Bergh and
Löfström [18].
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94. Àlvaro, Lozano-Robledo: Curves, Elliptic, Forms, Modular: and Their L-
functions. Amer. Math. Soc, Providence (2011)
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Taylor, 4
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reflection formula, 146
Stieltjes approximation, 150
Stirling formula, 148
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Hadamard

factorization theorem, 111
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Hardy–Littlewood tauberian theorem, 301
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partition function theorem, 321
Hardy uncertainty principle, 273
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maximum principle, 42
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strong maximum principle, 43
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principle, 48

Hausdorff–Young inequalities, 338
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hypergeometric function, 76
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infinite products, 10–11
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inversion formula

Fourier transform, 261
Mellin transform, 199
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isolated singularity, 6

J
Jacobi
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function, 61
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Lalesco problem, 287, 294
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functional equation, 179, 183
linear fractional transformation, 23
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Littlewood tauberian theorem, 301
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complex, 9
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M
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mapping theorem

Riemann, 53
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strong, 5
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Mellin transform, 188
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meromorphic function, 7
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Möbius function, 164
Möbius transformation, 23
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monodromy theorem, 13, 85
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of group, 169
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P
Paley–Wiener theorem, 274
parallel postulate, 33
partition function, 319

Hardy–Ramanujan theorem, 321
period, 205
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”big” theorem, 253
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Plancherel theorem, 265
Pochhammer symbol, 142
Poisson



352 Index

kernel, 44
summation formula, 267

polar point of Riemann surface, 87
pole, 6
polygon
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prime number theorem, 192
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polynomial, 91
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product formula for sine, 147
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quasiconformal map, 66
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reflection principles, 11–12
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regular singular point, 74
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theorem, 8
Riemann
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Rouché’s theorem, 8

S
schlicht function, 60
Schwartz class, 257
Schwarz

lemma, 28
mapping theorem, 73
reflection principle, 45, 56

triangle function, 59
Schwarz–Christoffel

mapping theorem, 57
Schwarzian derivative, 69
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singularity
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sporadic groups, 254
stereographic projection, 21
Stieltjes

integral, 14–15
transform, 309
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strong maximum principle, 43

T
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Hardy–Littlewood, 301
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Karamata, 302
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Tauber, 300
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transform
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Wallis formula, 151
Weierstrass

approximation theorems, 46
product theorem, 11, 106
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℘ function, 229–231
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Wiener
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